scholarly journals On the Satisfiability and Model Checking for one Parameterized Extension of Linear-time Temporal Logic

2021 ◽  
Vol 28 (4) ◽  
pp. 356-371
Author(s):  
Anton Romanovich Gnatenko ◽  
Vladimir Anatolyevich Zakharov

Sequential reactive systems are computer programs or hardware devices which process the flows of input data or control signals and output the streams of instructions or responses. When designing such systems one needs formal specification languages capable of expressing the relationships between the input and output flows. Previously, we introduced a family of such specification languages based on temporal logics $LTL$, $CTL$ and $CTL^*$ combined with regular languages. A characteristic feature of these new extensions of conventional temporal logics is that temporal operators and basic predicates are parameterized by regular languages. In our early papers, we estimated the expressive power of the new temporal logic $Reg$-$LTL$ and introduced a model checking algorithm for $Reg$-$LTL$, $Reg$-$CTL$, and $Reg$-$CTL^*$. The main issue which still remains unclear is the complexity of decision problems for these logics. In the paper, we give a complete solution to satisfiability checking and model checking problems for $Reg$-$LTL$ and prove that both problems are Pspace-complete. The computational hardness of the problems under consideration is easily proved by reducing to them the intersection emptyness problem for the families of regular languages. The main result of the paper is an algorithm for reducing the satisfiability of checking $Reg$-$LTL$ formulas to the emptiness problem for Buchi automata of relatively small size and a description of a technique that allows one to check the emptiness of the obtained automata within space polynomial of the size of input formulas.

2020 ◽  
Vol 27 (4) ◽  
pp. 428-441
Author(s):  
Anton Romanovich Gnatenko ◽  
Vladimir Anatolyevich Zakharov

Sequential reactive systems include programs and devices that work with two streams of data and convert input streams of data into output streams. Such information processing systems include controllers, device drivers, computer interpreters. The result of the operation of such computing systems are infinite sequences of pairs of events of the request-response type, and, therefore, finite transducers are most often used as formal models for them. The behavior of transducers is represented by binary relations on infinite sequences, and so, traditional applied temporal logics (like HML, LTL, CTL, mu-calculus) are poorly suited as specification languages, since omega-languages, not binary relations on omega-words are used for interpretation of their formulae. To provide temporal logics with the ability to define properties of transformations that characterize the behavior ofreactive systems, we introduced new extensions ofthese logics, which have two distinctive features: 1) temporal operators are parameterized, and languages in the input alphabet oftransducers are used as parameters; 2) languages in the output alphabet oftransducers are used as basic predicates. Previously, we studied the expressive power ofnew extensions Reg-LTL and Reg-CTL ofthe well-known temporal logics oflinear and branching time LTL and CTL, in which it was allowed to use only regular languages for parameterization of temporal operators and basic predicates. We discovered that such a parameterization increases the expressive capabilities oftemporal logic, but preserves the decidability of the model checking problem. For the logics mentioned above, we have developed algorithms for the verification of finite transducers. At the next stage of our research on the new extensions of temporal logic designed for the specification and verification of sequential reactive systems, we studied the verification problem for these systems using the temporal logic Reg-CTL*, which is an extension ofthe Generalized Computational Tree Logics CTL*. In this paper we present an algorithm for checking the satisfiability of Reg-CTL* formulae on models of finite state transducers and show that this problem belongs to the complexity class ExpSpace.


2007 ◽  
Vol 18 (01) ◽  
pp. 87-112 ◽  
Author(s):  
STÉPHANE DEMRI ◽  
DAVID NOWAK

We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on ω-sequences but interact synchronously with the system in order to restrict their behaviors. We show that the satisfiability and model-checking for the logics working on ωk-sequences is EXPSPACE-complete when the integers are represented in binary, and PSPACE-complete with a unary representation. To do so, we substantially extend standard results about LTL by introducing a new class of succinct ordinal automata that can encode the interaction between the different quantitative temporal operators.


Author(s):  
Anton Romanovich Gnatenko ◽  
◽  
Vladimir Anatolyevoch Zakharov ◽  

Sequential reactive systems such as controllers, device drivers, computer interpreters operate with two data streams and transform input streams of data (control signals, instructions) into output streams of control signals (instructions, data). Finite state transducers are widely used as an adequate formal model for information processing systems of this kind. Since runs of transducers develop over time, temporal logics, obviously, could be used as both simple and expressive formalism for specifying the behavior of sequential reactive systems. However, the conventional applied temporal logics (LTL, CTL) do not suit this purpose well, since their formulae are interpreted over omega-languages, whereas the behavior of transducers are represented by binary relations on infinite sequences, i.e. omega-transductions. To provide temporal logic with the ability to take into account this general feature of the behavior of reactive systems, we introduced new extensions of this logic. Two distinguished features characterize these extension: 1) temporal operators are parameterized by sets of streams (languages) admissible for input, and 2) sets (languages) of expected output streams are used as basic predicates. In the previous series of works we studied the expressive power and the model checking problem for Reg-LTL and Reg-CTL which are such extensions of LTL and CTL where the languages mentioned above are regular ones. We discovered that such an extension of temporal logics increases their expressive capability though retains the decidability of the model checking problem. Our next step in the systematic study of expressive and algorithmic properties of new extensions temporal logics is the analysis of the model checking problem for finite state transducers against Reg-CTL* formulae. In this paper we develop a model checking algorithm for Reg-CTL* and show that this problem is in ExpSpace.


1996 ◽  
Vol 6 (4) ◽  
pp. 353-373 ◽  
Author(s):  
J. L. Fiadeiro ◽  
J. F. Costa

SummarySince Pnueli’s seminal paper in 1977, Temporal Logic has been used as a formalism for specifying and verifying the correctness of reactive systems. In this paper, we show that, besides its expressive power, Temporal Logic enjoys a very strong structural property: it is categorical on processes. That is, we show how temporal specifications (as theories) can be embedded in categories of process behaviour, and out of this adjunction we build an institution that is categorical in the sense of Meseguer. This characterisation means that temporal logic is, in a sense, ‘sound and complete’ with respect to process specification and interconnection techniques.


Author(s):  
Julian Gutierrez ◽  
Muhammad Najib ◽  
Giuseppe Perelli ◽  
Michael Wooldridge

Rational verification involves checking which temporal logic properties hold of a concurrent and multiagent system, under the assumption that agents in the system choose strategies in game theoretic equilibrium. Rational verification can be understood as a counterpart of model checking for multiagent systems, but while model checking can be done in polynomial time for some temporal logic specification languages such as CTL, and polynomial space with LTL specifications, rational verification is much more intractable: it is 2EXPTIME-complete with LTL specifications, even when using explicit-state system representations.  In this paper we show that the complexity of rational verification can be greatly reduced by restricting specifications to GR(1), a fragment of LTL that can represent most response properties of reactive systems. We also provide improved complexity results for rational verification when considering players' goals given by mean-payoff utility functions -- arguably the most widely used quantitative objective for agents in concurrent and multiagent systems. In particular, we show that for a number of relevant settings, rational verification can be done in polynomial space or even in polynomial time.


Author(s):  
Xu Lu ◽  
Cong Tian ◽  
Zhenhua Duan

Temporal logics are widely adopted in Artificial Intelligence (AI) planning for specifying Search Control Knowledge (SCK). However, traditional temporal logics are limited in expressive power since they are unable to express spatial constraints which are as important as temporal ones in many planning domains. To this end, we propose a two-dimensional (spatial and temporal) logic namely PPTL^SL by temporalising separation logic with Propositional Projection Temporal Logic (PPTL). The new logic is well-suited for specifying SCK containing both spatial and temporal constraints which are useful in AI planning. We show that PPTL^SL is decidable and present a decision procedure. With this basis, a planner namely S-TSolver for computing plans based on the spatio-temporal SCK expressed in PPTL^SL formulas is developed. Evaluation on some selected benchmark domains shows the effectiveness of S-TSolver.


2018 ◽  
Vol 52 (4) ◽  
pp. 539-563 ◽  
Author(s):  
Norihiro Kamide

Purpose The purpose of this paper is to develop new simple logics and translations for hierarchical model checking. Hierarchical model checking is a model-checking paradigm that can appropriately verify systems with hierarchical information and structures. Design/methodology/approach In this study, logics and translations for hierarchical model checking are developed based on linear-time temporal logic (LTL), computation-tree logic (CTL) and full computation-tree logic (CTL*). A sequential linear-time temporal logic (sLTL), a sequential computation-tree logic (sCTL), and a sequential full computation-tree logic (sCTL*), which can suitably represent hierarchical information and structures, are developed by extending LTL, CTL and CTL*, respectively. Translations from sLTL, sCTL and sCTL* into LTL, CTL and CTL*, respectively, are defined, and theorems for embedding sLTL, sCTL and sCTL* into LTL, CTL and CTL*, respectively, are proved using these translations. Findings These embedding theorems allow us to reuse the standard LTL-, CTL-, and CTL*-based model-checking algorithms to verify hierarchical systems that are modeled and specified by sLTL, sCTL and sCTL*. Originality/value The new logics sLTL, sCTL and sCTL* and their translations are developed, and some illustrative examples of hierarchical model checking are presented based on these logics and translations.


2017 ◽  
Vol 29 (1) ◽  
pp. 3-37 ◽  
Author(s):  
GIORGIO BACCI ◽  
GIOVANNI BACCI ◽  
KIM G. LARSEN ◽  
RADU MARDARE

We study two well-known linear-time metrics on Markov chains (MCs), namely, the strong and strutter trace distances. Our interest in these metrics is motivated by their relation to the probabilistic linear temporal logic (LTL)-model checking problem: we prove that they correspond to the maximal differences in the probability of satisfying the same LTL and LTL−X(LTL without next operator) formulas, respectively.The threshold problem for these distances (whether their value exceeds a given threshold) is NP-hard and not known to be decidable. Nevertheless, we provide an approximation schema where each lower and upper approximant is computable in polynomial time in the size of the MC.The upper approximants are bisimilarity-like pseudometrics (hence, branching-time distances) that converge point-wise to the linear-time metrics. This convergence is interesting in itself, because it reveals a non-trivial relation between branching and linear-time metric-based semantics that does not hold in equivalence-based semantics.


1995 ◽  
Vol 2 (18) ◽  
Author(s):  
Allan Cheng

The complexity of model checking branching and linear time<br />temporal logics over Kripke structures has been addressed in e.g. [SC85,<br />CES86]. In terms of the size of the Kripke model and the length of the<br />formula, they show that the model checking problem is solvable in <br />polynomial time for CTL and NP-complete for L(F). The model checking<br />problem can be generalised by allowing more succinct descriptions of<br />systems than Kripke structures. We investigate the complexity of the<br />model checking problem when the instances of the problem consist of<br />a formula and a description of a system whose state space is at most<br />exponentially larger than the description. Based on Turing machines,<br />we define compact systems as a general formalisation of such system<br />descriptions. Examples of such compact systems are K-bounded Petri<br />nets and synchronised automata, and in these cases the well-known <br />algorithms presented in [SC85, CES86] would require exponential space in<br />term of the sizes of the system descriptions and the formulas; we present<br />polynomial space upper bounds for the model checking problem over<br />compact systems and the logics CTL and L(X,U,S). As an example of<br />an application of our general results we show that the model checking<br />problems of both the branching time temporal logic CTL and the linear<br />time temporal logics L(F) and L(X,U, S) over K-bounded Petri nets are<br />PSPACE-complete.


Sign in / Sign up

Export Citation Format

Share Document