Determination of Thermal Expansion Coefficients of High Temperature Materials

2021 ◽  
Author(s):  
Nana-Kwaku Danquah ◽  
Patrick Mensah ◽  
Samuel Ibekwe ◽  
Guoqiang Li
2018 ◽  
Vol 38 (4) ◽  
pp. 406-413 ◽  
Author(s):  
Yusaku Takubo ◽  
Hidenori Terasaki ◽  
Tadashi Kondo ◽  
Shingo Mitai ◽  
Seiji Kamada ◽  
...  

1994 ◽  
Vol 9 (2) ◽  
pp. 148-150
Author(s):  
Nabil N. Rammo ◽  
Saad B. Farid

The temperature variation of the interplanar spacings (101), (112), and (211) of 325 mesh quartz was determined in the range 300–966 °K using X-ray powder diffractometry. The measured lattice parameters have been found to increase nonlinearly with temperature, and the dependence has been expressed by a polynomial of second degree from the least-squares fitting of the data, the results of which are presented herein. Values are given for the thermal expansion coefficients and Gruneisen parameter in the range 300 to 768 °K. In the range 768–966 °K, the expansion is zero. The derivatives dαa/dT, dαc/dT, and dαv/dT at ambient temperature are also given.


2011 ◽  
Vol 399-401 ◽  
pp. 80-84
Author(s):  
Yi Yuan Tang ◽  
Jie Li Meng ◽  
Kai Lian Huang ◽  
Jian Lie Liang

Phase transformation of the Zr-1.0Sn-0.39Nb-0.31Fe-0.05Cr alloy was investigated by high temperature X-ray diffraction (XRD). The XRD results revealed that the alloy contained two precipitates at room temperature, namely β-Nb and hexagonal Zr(Nb,Fe,Cr,)2. β-Nb was suggested to dissolve into the α-Zr matrix at the 580oC. Thin oxide film formed at the alloy’s surface was identified as mixture of the monoclinic Zr0.93O2and tetragonal ZrO2, when the temperature reached to 750oC and 850 oC. The thermal expansion coefficients of αZr in this alloy was of αa = 8.39×10-6/°C, αc = 2.48×10-6/°C.


1997 ◽  
Vol 12 (12) ◽  
pp. 3230-3240 ◽  
Author(s):  
C. R. Kachelmyer ◽  
I. O. Khomenko ◽  
A. S. Rogachev ◽  
A. Varma

Time-resolved x-ray diffraction (TRXRD) was performed during Ti5Si3 synthesis by the self-propagating high-temperature synthesis mode for different Ti size fractions. It was determined that the time for product formation (ca. 15 s) was independent of Ti particle size. However, the formation of Ti5Si4 phase occurred when relatively large titanium particles were used. A simultaneous measurement of the temperature and TRXRD allowed us to attribute the shifting of XRD peaks at high temperature to thermal expansion of the Ti5Si3 product. The thermal expansion coefficients differ for different crystal planes, and their numerical values compare well with those reported previously in the literature.


Sign in / Sign up

Export Citation Format

Share Document