scholarly journals The Design of Product Families for Reconfigurable Assembly Systems: Student Research Experiences

2016 ◽  
Author(s):  
April Bryan ◽  
John Lund
2020 ◽  
Author(s):  
Abhijit Nagchaudhuri ◽  
Terry Teays ◽  
Mary Bowden ◽  
Guangming Chen ◽  
Richard Henry

CIRP Annals ◽  
2007 ◽  
Vol 56 (1) ◽  
pp. 41-44 ◽  
Author(s):  
A. Bryan ◽  
J. Ko ◽  
S.J. Hu ◽  
Y. Koren

2015 ◽  
Vol 1762 ◽  
Author(s):  
Nicole Ferrari ◽  
Carol Jenkins ◽  
Jacquelynn Garofano ◽  
Deborah Day ◽  
Todd Schwendemann ◽  
...  

ABSTRACTResearch Experiences for Undergraduates (REU) programs traditionally function as a recruitment vehicle to encourage students to pursue further studies in STEM (Science, Technology, Engineering and Math) and as an opportunity for STEM majors to delve deeper into their chosen fields of study. Based on a critical examination of REU student feedback, evaluators at CRISP (Center for Research on Interface Structures and Phenomena) have found that in addition to these conventional benefits of research-based experiences, the value of interdisciplinary skill development is integral to the REU experience and these contributions may warrant a more formal evaluative definition. Using the emerging 21st Century Skills Framework, CRISP has begun conducting a series of small-scale studies in an effort to define the contribution of student research experiences in cross-disciplinary skill development and the positive effects that exposure to real-world science practices have on refinement of career decisions and vocational success. Using Likert-type survey methods, this study directly examines current and former REU students’ perceptions of the importance of interdisciplinary 21st century skills such as creativity, collaboration, communication, information literacy, and problem-solving in their REU experience and their perceived value of these skills in their future and/or current careers. Through better understanding the role these “soft skills” play in student research experiences, CRISP hopes to maximize these interdisciplinary benefits within its REU program to best prepare students for the complex demands of the 21st century workplace.


Author(s):  
A. Bryan ◽  
S. J. Hu ◽  
Y. Koren

In order to gain competitive advantage, manufacturers require cost effective methods for developing a variety of products within short time periods. Product families, reconfigurable assembly systems and concurrent engineering are frequently used to achieve this desired cost effective and rapid supply of product variety. The independent development of methodologies for product family design and assembly system design has led to a sequential approach to the design of product families and assembly systems. However, the designs of product families and assembly systems are interdependent and efficiencies can be gained through their concurrent design. There are no quantitative concurrent engineering techniques that address the problem of the concurrent design of product families and assembly systems. In this paper, a non-linear integer programming formulation for the concurrent design of a product family and assembly system is introduced. The problem is solved with a genetic algorithm. An example is used to demonstrate the advantage of the concurrent approach to product family and assembly system design over the existing sequential methodology.


Author(s):  
A. Bryan ◽  
S. J. Hu ◽  
Y. Koren

The need to cost effectively introduce new generations of product families within ever decreasing time frames have led manufacturers to seek product development strategies with a multigenerational outlook. Co-evolution of product families and assembly systems is a methodology that leads to the simultaneous design of several generations of product families and reconfigurable assembly systems that optimize life cycle costs. Two strategies that are necessary for the implementation of the co-evolution of product families and assembly systems methodology are: (1) The concurrent design of product families and assembly systems and (2) Assembly system reconfiguration planning (ASRP). ASRP is used for the determination of the assembly system reconfiguration plans that minimize the cost of producing several generations of product families. More specifically, the objective of ASRP is to minimize the net present cost of producing successive generations of products. This paper introduces a method for finding optimum solutions to the ASRP problem. The solution methodology involves the generation of a staged network of assembly system plans for all the generations that the product family is expected to be produced. Each stage in the network represents a generation that the product family is produced, while each state within a stage represents a potential assembly system configuration. A novel algorithm for generating the states (i.e. assembly system configurations) within each generation is also introduced. A dynamic program is used to find the cost minimizing path through the network. An example is used to demonstrate the implementation of the ASRP methodology.


Sign in / Sign up

Export Citation Format

Share Document