scholarly journals Stability Analysis of Slope Based on Limit Equilibrium Method and Strength Reduction Method

2021 ◽  
Vol 45 (5) ◽  
pp. 379-384
Author(s):  
Hanlin Li ◽  
Zhiqiang Zhang ◽  
Wei Yang

Drawing on the theories of limit equilibrium and finite-element strength reduction, this paper explores the instability modes and stability change laws of the slope in zones E, W, and S of Jiajika spodumene mine, through rock mechanics tests, field survey, and numerical simulation. The results show that the sliding mode of the slope is circular arc sliding or circular arc + plane sliding. Overall, the final slope of the open-pit mine is generally stable under the current design, and the slope of the current steps is reasonable.

2016 ◽  
Vol 858 ◽  
pp. 73-80
Author(s):  
Ying Kong ◽  
Hua Peng Shi ◽  
Hong Ming Yu

With the slope unstable rock masses of a stope in Longsi mine, Jiaozuo City, China as the target, we computed and analyzed the stability of unstable rock masses using a limit equilibrium method (LEM) and a discrete element strength reduction method (SRM). Results show that the unstable rock masses are currently stable. Under the external actions of natural weathering, rainfall and earthquake, unstable rock mass 1 was manifested as a shear slip failure mode, and its stability was controlled jointly by bedding-plane and posterior-margin steep inclined joints. In comparison, unstable rock mass 2 was manifested as a tensile-crack toppling failure mode, and its stability was controlled by the perforation of posterior-margin joints. From the results of the 2 methods we find the safety factor determined from SRM is larger, but not significantly, than that from LEM, and SRM can simulate the progressive failure process of unstable rock masses. SRM also provides information about forces and deformation (e.g. stress-strain, and displacement) and more efficiently visualizes the parts at the slope that are susceptible to instability, suggesting SRM can be used as a supplementation of LEM.


2012 ◽  
Vol 170-173 ◽  
pp. 1238-1242
Author(s):  
Xue Wei Li ◽  
Xin Yuan ◽  
Xiao Wei Li

Abstract. Combined the strength reduction method with ABAQUS, the development of the slope plastic strain of different reduction coefficient is obtained by constantly adjusting reduction coefficient to change the strength index of the soil. The reduction coefficient is obtained from the criterion of numerical convergence and displacement mutation and plastic zone breakthrough. Through the analysis and comparison with the results, the reduction coefficient by the criterion of displacement mutation is consistent with the result of the criterion of plastic zone breakthrough. The reduction coefficient is the safety coefficient of the slope, and compared and analyzed with the slope factor of limit equilibrium method Bishop. The result shows that the displacement mutation and the plastic zone breakthrough as criterions to judge the slope instability are reasonable.


2012 ◽  
Vol 548 ◽  
pp. 363-366
Author(s):  
Mao Hu Wang ◽  
Zhen Liang Xu

This article simulates an open pit slope stability using the ANSYS software, which is based on the finite element strength reduction theory, three kinds of slope instability criterion of the strength reduction method are applied to judge whether the slope is on the limit equilibrium state, the incremental search method is used to search the safety factor of the slope stability, and the results show that, the slope body damages when the plastic zone developed from the top to the bottom, in the numerical simulation the finite element iteration calculation didn’t just converge, the corresponding former level of reduction factor is the safety factor, This article can have a guiding significance on the safety production of the open-pit mine.


2014 ◽  
Vol 501-504 ◽  
pp. 51-55 ◽  
Author(s):  
Chao Peng ◽  
Dong Ji ◽  
Liang Zhao ◽  
Zhen Yu Qian ◽  
Fen Hua Ren

An analysis on safety factor of slope through c - φ reduction algorithm by finite elements method is presented. When the system reaches instability, the numerical non-convergence occurs simultaneously. The safety factor is then obtained by c φ reduction algorithm. This paper, which combines with the actual situation of Jinduicheng open pit mine, analysis the stability of the limit height of the dump based on strength reduction of finite element method. And the value of slope safety factor is 1.25 to 1.30. The results show that calculating safety factors of the slope by ANSYS is in full conformity with the basic requirement of safety. That means, the dump is stable, which can reduce the production costs and benefit the enterprise.


2012 ◽  
Vol 170-173 ◽  
pp. 918-922 ◽  
Author(s):  
Xing Yang ◽  
Gui Yang ◽  
Ting Yu

Strength reduction method is widely used in the slope stability analysis. However, it is short of unified instability evaluation standard at present. And the different numerical calculation methods also influence the safety factor of strength reduction method. Taking a typical slope in this paper, the same model meshes are established in ABAQUS FEM and FLAC3D FDM by using the self-compiled model transformation program ABAQUS-FLAC3D. Then the same elastic-plastic constitutive and yield criterion are both employed in ABAQUS FEM and FLAC3D FDM. The safety factors obtained from the two numerical calculation methods are compared, and the results are also compared with that of Spencer limit equilibrium method. It is observed the safety factors calculated by ABAQUS FEM are slightly higher than that of FLAC3D FDM for the same instability evaluation standards. Moreover, the safety factors obtained from the run-through of plastic zone and the saltation of the displacement at characteristic point are much closer to that of Spencer limit equilibrium method. Hence the combination of the run-through of plastic zone and the saltation of the displacement at characteristic point as the slope instability evaluation standard is suggested in this paper. Meanwhile, the correctness of self-compiled improved strength reduction method is verified by comparing with the result of FLAC3D built-in strength reduction method.


2012 ◽  
Vol 424-425 ◽  
pp. 1187-1190
Author(s):  
Yue Zhai ◽  
Kun Long Yin

With the anti-shear parameters reduction, the nonlinear strength reduction FEM model of slope turns to unstable status and the numerical non-convergence occurs simultaneously. Hence, the safety stability factor obtained based on c-φ reduction algorithm can be regarded as equal to stability factor obtained using limit equilibrium method. In this paper, stability analysis of one reservoir slope is made and the calculation results show that the strength reduction method matches the traditional grid limit equilibrium method well, yet with much more available information. Efficient and accurate, the strength reduction FEM is feasible to examine slope stability and analyze slope movement patterns.


2014 ◽  
Vol 962-965 ◽  
pp. 868-872
Author(s):  
Li Yan ◽  
Hou Li Fu

To the problem of slope stability analysis and slope-cutting of rock slope, the traditional method Limit Equilibrium Method has many shortcomings as assuming the position and shape of the slip plane first. However, with the new theory of Strength Reduction Method, the problem can be easily solved. By selecting the appropriate criterion of instability and failure of sliding surface of slope, the Strength Reduction Method simulates the gradual development process of slope-cutting. By this method, we can simulate the failure process of slope and obtain the safety factors and slipping surface. This paper put forward the process of cutting slop by Strength Reduction FDM (Finite Difference Method) which had new insights into the choice of instability criterion, flow rule and slip plane.


Sign in / Sign up

Export Citation Format

Share Document