Numerical Study of Plastic Strains on Slope Instability

2012 ◽  
Vol 548 ◽  
pp. 363-366
Author(s):  
Mao Hu Wang ◽  
Zhen Liang Xu

This article simulates an open pit slope stability using the ANSYS software, which is based on the finite element strength reduction theory, three kinds of slope instability criterion of the strength reduction method are applied to judge whether the slope is on the limit equilibrium state, the incremental search method is used to search the safety factor of the slope stability, and the results show that, the slope body damages when the plastic zone developed from the top to the bottom, in the numerical simulation the finite element iteration calculation didn’t just converge, the corresponding former level of reduction factor is the safety factor, This article can have a guiding significance on the safety production of the open-pit mine.

2013 ◽  
Vol 813 ◽  
pp. 263-268 ◽  
Author(s):  
Xiao Lei Qian ◽  
Yun Peng Ren ◽  
Su He Gao ◽  
Guo Qiang Wang

To determine the safe distance between spreader and the upper verge of dump slope, a 2D and 3D slope model was built respectively, the limit equilibrium method and the finite element method with shear strength reduction technique (FEM-SSR) were introduced to analyze the stability of the spreader. For the slope under the action of variable external loads, the simple genetic algorithm (SGA) sometimes fails to converge to the global optimum, for this reason, an improved optimum maintaining simple genetic algorithm (OMSGA) was utilized to search for the critical slip surface, and the probability of the global convergence was improved greatly. On the basis of the three-dimensional elastic-plastic finite element model of the dump slope, the minimum sinkage of spreader track which interferes the spreaders normal operation was taken as the criterion to determine the safety factor, according to this idea, the deformation in the elastic stage during the process of strength reduction was considered, and a more reliable safety factor by the variable stiffness method was obtained.


2021 ◽  
Author(s):  
Aurelian C. Trandafir

Abstract Pseudostatic limit-equilibrium based slope stability analyses are carried out on a routine basis to evaluate stability of submarine slopes under earthquake loading. For slopes in deepwater settings, a major challenge in performing pseudostatic slope stability analyses is selection of an appropriate seismic coefficient. Most published displacement-based methodologies for seismic coefficient selection were developed using simplified sliding block models for seismic slope performance evaluation that are unable to capture the complex deformation mechanism of deepwater slopes during earthquakes. To address this challenge, this study employs two-dimensional dynamic finite-element based deformation analysis to investigate the earthquake response of submarine clay slopes characterized by morphology, stratigraphic architecture and geotechnical properties representative for the deepwater environment. Finite-element computed seismic slope performance indicators, including horizontal peak ground acceleration at the seafloor and earthquake-induced maximum shear strain within the slope, along with horizontal seismic coefficients required to trigger slope instability in limit-equilibrium based pseudostatic stability analyses are used to develop a rational shear strain-based correlation relationship for deepwater slope seismic coefficient selection.


2021 ◽  
Vol 1 (1) ◽  
pp. 22-29
Author(s):  
Rana Antariksa D ◽  
Yuliadi ◽  
Zaenal

Abstract. PT X is a company engaged in the cement factory industry in West Java that uses an open-pit mining system with limestone mining. X is planning the location of waste dump placement using the in-pit dump method, so a safe and efficient final slope design is needed. For optimal stockpiling activities, slope geometry planning on the waste material dump needs to be carried out slope stability analysis. Slope stability is influenced by slope height, slope angle, rock mass strength, rock type, and groundwater level. The purpose of this research is to find out whether or not a slope is stably displayed in the Safety Factor (FK) value. Analysis process is carried out using the Finite Element Method and the Boundary Equilibrium Method. The analysis was carried out on bedrock and pile material. Analysis of bedrock using Finite Element Method in the Goa area in Sections A - B and C - D obtained SRF values ​​of 4.6 and 16 with a total displacement of 13,771 m and 6 m. In the area of ​​Mount Bindis Section E - F and G - H obtained SRF values ​​of 2.5 and 4.75 with a total displacement of 11.8 m and 3 m. Analysis of the embankment material in the Goa In areas with Sections A - B and C - D FK values ​​obtained = 2.11 and 1.56 and for Section C - D FK 2.62 and 1.94. In the Mount Bindis Area with sections E - F and G - H FK values ​​= 1.59 and for Section G - H FK values ​​= 2.31 and 1.57. The disposal obtained the amount of volume that will be accommodated in each area of ​​11,175,191.19 LCM and 74,749,919.45 LCM. Abstrak. PT X adalah perusahaan yang bergerak di industri pabrik semen di Jawa Barat yang menggunakan sistem penambangan terbuka dengan penambangan batu kapur. X sedang merencanakan lokasi penempatan pembuangan limbah dengan menggunakan metode pembuangan di dalam pit, sehingga diperlukan desain lereng akhir yang aman dan efisien. Untuk kegiatan penimbunan yang optimal, perencanaan geometri lereng pada tempat pembuangan bahan limbah perlu dilakukan analisis stabilitas lereng. Stabilitas lereng dipengaruhi oleh ketinggian lereng, sudut lereng, kekuatan massa batuan, jenis batuan, dan tingkat air tanah. Tujuan dari penelitian ini adalah untuk mengetahui apakah kemiringan secara stabil ditampilkan dalam nilai Safety Factor (FK). Proses analisis dilakukan dengan menggunakan Metode Elemen Hingga dan Metode Kesetaraan Batas. Analisis dilakukan pada material batuan dasar dan tiang pancang. Analisis batuan dasar menggunakan Metode Elemen Hingga di daerah Goa di Bagian A - B dan C - D memperoleh nilai SRF 4,6 dan 16 dengan total perpindahan 13,771 m dan 6 m. Di daerah Gunung Bindis Bagian E - F dan G - H diperoleh nilai SRF 2,5 dan 4,75 dengan total perpindahan 11,8 m dan 3 m. Analisis bahan timbunan di Goa Di daerah dengan Bagian A - B dan C - D nilai FK diperoleh = 2.11 dan 1.56 dan untuk Bagian C - D FK 2.62 dan 1.94. Di Wilayah Gunung Bindis dengan bagian E - F dan G - H nilai FK = 1,59 dan untuk Bagian G - H nilai FK = 2,31 dan 1,57. Pembuangan memperoleh jumlah volume yang akan ditampung di masing-masing area 11.175.191 LCM dan 74.749.919,45 LCM.


2013 ◽  
Vol 438-439 ◽  
pp. 1244-1248 ◽  
Author(s):  
Chun Ming Wang ◽  
Chun Yuan Liu ◽  
Mai Wu ◽  
Xin Zhao

In the construction of mountainous area roads, the similar soil slope is the most common slope form. During the construction, the problem we often meet is how to make the evaluation about the stability of the similar soil slope. The joints exist in the matrix rock, which make great effect on the stability of the slope. The main idea of this article is to analyze the effect of joints and the rain seeped in on the instability of the slope. To solve the problem, the finite element strength reduction theory is taken in this article, and the geotechnical finite element analysis software z_soil is chosen to make the analysis about the instability criterion and the stability in the condition the rain of the similar slope.


2012 ◽  
Vol 575 ◽  
pp. 70-74 ◽  
Author(s):  
Ying Xia Huo ◽  
Hong Fei Zhai

Slope stability represents an area of geotechnical analysis in which finite element method provides a lot of benefits over limit equilibrium. In this paper, the authors apply a finite element code, PLAXIS, on slope stability analysis with various conditions to state out sensitivities of not only the soil parameters, slope configuration and groundwater condition but also numerical condition that one would encounter when making a FE slope design. It demonstrates that slightly conservative safety factor is obtained using FEM over the ones from limit equilibrium method. Intensity of mesh for simulation domain shall be selected as a fine level for an acceptable accuracy and economical computation time. Element nodes slightly affect the result of safety factor and final deformation of the slope.


2012 ◽  
Vol 256-259 ◽  
pp. 157-162
Author(s):  
Lai Gui Wang ◽  
Guo Chao Zhao ◽  
Feng He

In order to search for the control factors of slope stability containing weak layers, combining with the methods of the finite element and the limit equilibrium to simulate the slope stability problems. From the numerical simulation results, the stress field distribution and displacement field distribution internal the slope could be got. According to the finite element analysis results and the safety factor of slope stability got with the limit equilibrium method, evaluate the slope stability. By the simulation analysis of slope which contains a number of weak structural surfaces, the conclusion we got is that the existence of weak structural plane like weak layers and faults are the main factors of slope instability.


2012 ◽  
Vol 170-173 ◽  
pp. 885-888
Author(s):  
Peng Fei Li ◽  
Hong Bo Liu ◽  
Yu Zhang

The strength reduction method is applied in the analysis of slope stability, strength reduction, into the finite element program for calculating, until computations convergence. Combined with the engineering example, comparison of slope stability finite element method and the traditional limit equilibrium method the results show that, based on the strength reduction finite element analysis of slope stability is feasible.


2011 ◽  
Vol 97-98 ◽  
pp. 78-84
Author(s):  
Sheng Chuan Liu

Strength reduction elasto-plastic finite element analysis defines the reduction factor when slope has been destroyed as the slope stability factor of safety, which combines with strength reduction technique, the limit equilibrium theory and the principle of elastic-plastic finite element. Three-dimensional finite element analysis should be used in stability analysis of slope because it can overcome the short advantages of two-dimensional finite element and can simulate the complex topographic and geological conditions. Based on the large-scale triaxial shear test, the modified Duncan-Chang model is established. Based on strength reduction elasto-plastic finite element, stability of high fill embankment was studied with three-dimensional finite element method considering the complex terrain conditions. Study results suggest that plastic strain and displacement mutant of slip surface node can be a sign of slope instability as a whole. At the same time calculation of three-dimensional finite element also does not converge. Therefore, it can be slope instability criterion calculate whether the finite element static analysis converges or not. On the other hand, stability safety factor of high fill embankment under three-dimensional conditions is larger than that of two-dimensional conditions, which shows that boundary conditions of high fill embankment enhance its stability.


2013 ◽  
Vol 275-277 ◽  
pp. 1423-1426
Author(s):  
Lin Kuang ◽  
Ai Zhong Lv ◽  
Yu Zhou

Based on finite element analysis software ANSYS, slope stability analysis is carried out by Elastic limiting equilibrium method proposed in this paper. A series of sliding surface of the slope can be assumed firstly, and then stress field along the sliding surface is analyzed as the slope is in elastic state. The normal and tangential stresses along each sliding surface can be obtained, respectively. Then the safety factor for each slip surface can be calculated, the slip surface which the safety factor is smallest is the most dangerous sliding surface. This method is different from the previous limit equilibrium method. For the previous limit equilibrium method, the normal and tangential stresses along the sliding surface are calculated based on many assumptions. While, the limit equilibrium method proposed in this paper has fewer assumptions and clear physical meaning.


Sign in / Sign up

Export Citation Format

Share Document