scholarly journals Impact of the Integration of a STATCOM Controlled by LQG/H2 Regulator in an Energy System

2021 ◽  
Vol 23 (5) ◽  
pp. 361-370
Author(s):  
Mohammed Mekki ◽  
Houari Merabet Boulouiha ◽  
Ahmed Allali ◽  
Mouloud Denai

Nowadays, the reactive power consumption is becoming a serious problem for electricity network management. To overcome this problem, several solutions are proposed in the literature. In the present study, the static reactive power compensator (STATCOM) solution is used to keep the network voltage within its rated range. The STATCOM is modeled in the axes of Park reference frame and is driven controlled by a SVPWM strategy. Its control scheme is based on a multivariable Linear Quadratic Gaussian (LQG/H2) controller, which has the advantage of being applied to systems whose condition is not measured. Simulations are performed using the MATLAB/SIMULINK software. Results are presented, compared and discussed.


2015 ◽  
Vol 18 (1) ◽  
pp. 16-28
Author(s):  
Phuong Minh Le ◽  
Dai Tan Le ◽  
Hoa Thi Xuan Pham

This paper presents a new method for controling parallel inverters to share active power and reactive power in the energy system with non-linear loads. In these systems, the virtual output impedance is usually added to the control loop of each inverter to improve the active power and reactive power sharing as well as the quality of the voltage system. Paper also proposes a kind of virtual impedance as a second-order general-integrator (SOGI) scheme. The simulation results in Matlab Simulink show the ability of the proposed controller to good share power P-Q, when connected with unbalanced and nonlinear loads. By using the proposed algorithm allows to reduce the voltage THD to 1.9% and 1.2% for unbalanced and nonlinear loads according by comparision with traditional control scheme.



Author(s):  
Muhammad Ibrahim ◽  
Edi Kurniawan ◽  
Elvan Yuniarti

Penelitian ini membahas tentang simulasi model gerak rotasi quadrotor OS4 EPFL dengan kendali LQG (Linear Quadratic Gaussian). Quadrotor disebut juga quadrotor helicopter atau quadrocopter, adalah sebuah pesawat tanpa awak (unmanned aerial vehicle / UAV) yang digerakkan oleh empat rotor yang terletak di kanan, kiri, depan dan belakang ujung kerangka silang yang simetri. Penelitian ini bertujuan untuk merancang sistem kendali LQG (Linear Quadratic Gaussian) untuk gerak rotasi quadrotor dan memastikan kinerja kendali LQG serta menganalisisnya. Metode penelitian yang digunakan dengan mensimulasikan gerak rotasi dengan menggunakan software MATLAB Simulink R2014b. Dari penelitian yang telah dilakukan, didapatkan adalah program simulasi stabilisasi sudut gerak rotasi quadrotor dengan kendali LQG berjalan dengan baik dan pemilihan matriks bobot Q =[1 1 1 1 70 70] dan R memiliki nilai 6.25 x 10-5 yang digunakan. Untuk kondisi awal sebesar pi/4 radian untuk sudut roll  radian untuk sudut pitch dan yaw pi/4 diperoleh waktu stabil sekitar 5,6,5 menit. Hal tersebut menunjukkan kondisi yang baik



2019 ◽  
Vol 29 (04) ◽  
pp. 2050064 ◽  
Author(s):  
A. Gowrishankar ◽  
M. Ramasamy

Unified Power Quality Conditioner (UPQC) with a modified Power Angle Control (PAC) scheme is presented for effective interconnection of renewable energy system into the grid. The UPQC consists of both shunt and series Active Power Filters (APFs). The shunt and series APF is one of the most effective custom power devices, which provides compensation for current and voltage-based disturbances, respectively. The shunt APF supplies active power to the load from the Distributed Generation (DG) in addition to reactive power demand supplied by it. Because of this functionality, the Volt–Ampere (VA) burden increases along with the rating of the shunt inverter. The PAC scheme aims to effective utilization of series and shunt APFs through sharing of reactive power to reduce VA burden on shunt APF. The PAC scheme is based on Synchronous Reference Frame (SRF) theory, which has simple computations, is robust and uses existing measurements of Solar Photovoltaic (SPV)-integrated UPQC. The performance of the proposed SPV-integrated UPQC is verified with the manifestation of nonlinear loads and reactive burdens with the SPV power generating system. The dynamic performance of the PV-UPQC is verified under the grid disturbances such as voltage sag, swell, varying load and change in solar irradiation. The effectiveness of the proposed control scheme is evaluated through the digital simulation and hardware experimental prototype model.



Author(s):  
T Yamamoto ◽  
Y Ohnishi ◽  
S L Shah

In order to manufacture high-quality products it is necessary to regularly monitor the performance of the control loops that regulate the quality variables of interest. This paper describes a design scheme of performance-adaptive controllers which are based on the above control strategy. According to the proposed control scheme, the output prediction error is monitored regularly and system identification is initiated if this error exceeds a user-defined threshold. Subsequently proportional—integral—derivative (PID) parameters are updated for the new model. Optimal PID parameters are calculated based on the linear quadratic Gaussian (LQG) trade-off curve obtained for the reidentified process model. The behaviour of the proposed control scheme is numerically evaluated by some simulation examples.



Author(s):  
Selam Karim ◽  
Allaoui Tayeb ◽  
Tadjine Mohamed

Objective: This article presents a comparative study between the direct control for a Doubly- Fed Induction Generator (DFIG) in the healthy and faulty mode. Methods: First with classical IP controller then Linear Quadratic Gaussian (LQG) controller which propose an ensemble of Linear Quadratic Regulator and Kalman filter for the state estimation. The developed model of the machine allows the simulation of the inter-turn short circuit in the stator. The use of the LQG method provides very good performance for motor operation and robustness of the control law despite the external perturbation. The performance of the control is compared to a classical controller's PI. Results: The obtained results demonstrate that this type of controller allows the alleviation of the mechanical stress and it ensures good performances under fault, the continuity of this system is ensured. Conclusion: The simulation has been carried out using a MATLAB script and the results are presented.



Author(s):  
O.I. Chyzhenko ◽  
◽  
I.V. Trach ◽  
K.O. Lypkivskyi ◽  
◽  
...  


1985 ◽  
Author(s):  
D. RIDGELY ◽  
SIVA BANDA ◽  
TIMOTHY MCQUADE ◽  
P. LYNCH


Sign in / Sign up

Export Citation Format

Share Document