scholarly journals Engine Performance and Emission Studies by Application of Nanoparticles and Antioxidants as Additives in Biodiesel Blends

2020 ◽  
Vol 30 (3-4) ◽  
pp. 175-180
Author(s):  
Siddavatam Reddy ◽  
Mohmad Marouf Wani

2021 ◽  
Vol 282 ◽  
pp. 111917
Author(s):  
L. Razzaq ◽  
M.A. Mujtaba ◽  
Manzoore Elahi M. Soudagar ◽  
Waqar Ahmed ◽  
H. Fayaz ◽  
...  


2021 ◽  
Vol 143 (12) ◽  
Author(s):  
A. Anderson ◽  
Amal M. Al-Mohaimeed ◽  
Mohamed Soliman Elshikh ◽  
T. R. Praveenkumar ◽  
M. Sekar

Abstract The current study emphasis on the engine performance and emission characteristics of rapeseed and soya biodiesel dispersion on a novel nanocatalyst at different concentrations of 25 ppm and 50 ppm. The results of this study were compared with those of conventional diesel at varying load conditions on a combustion ignition engine. An α-Fe2O3-doped Al2O3 was mixed with rapeseed biodiesel and soya biodiesel using an ultrasonicator at a frequency of 25 kHz. This study revealed that the incorporation of nanoparticles in biodiesel enhanced the performance of the blends by reducing the content of lignin and other unsaturated fatty acids. The improvement in the performance of the engine is mainly attributed to the high area-to-volume ratio of the nanocatalyst. Emissions of NOx. hydrocarbon and carbon monoxide during the combustion reaction increased significantly when nanoparticles were added at higher concentrations. Contrastingly, the emission of NOx in pure biodiesel was higher than that in conventional diesel. The addition of nanoparticles reduced CO emissions due to the presence of extra oxygen molecules and converted carbon monoxide into carbon dioxide. Soya seed biodiesel blends with 50 ppm nanoparticles showed better engine performance and emission characteristics as compared with all other blends.



Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.





RSC Advances ◽  
2015 ◽  
Vol 5 (17) ◽  
pp. 13246-13255 ◽  
Author(s):  
A. Sanjid ◽  
H. H. Masjuki ◽  
M. A. Kalam ◽  
S. M. Ashrafur Rahman ◽  
M. J. Abedin ◽  
...  

The present research is aimed to investigate the feasibility of using palm (PB), mustard (MB) and Calophyllum biodiesel (CB) as renewable and alternative fuels.









Sign in / Sign up

Export Citation Format

Share Document