scholarly journals Rocess Design of Fiber Reinforced Magnesium Matrix Composites

2018 ◽  
Vol 1 (1) ◽  
pp. 36
Author(s):  
Hualun Ding ◽  
Ximin Gong ◽  
Iaoxuan Shang

<p>This paper chooses magnesium as the matrix of composite materials, selects carbon fiber as reinforcement, and designs the composite scheme according to the structure and performance of Mg-based composites. The performance characteristics and application prospect of fiber-reinforced magnesium matrix composites are introduced. Wait. In this paper, the process of preparing carbon fiber magnesium matrix composites by compression casting method and spray deposition method is designed. The process flow chart of these two design schemes is determined by analyzing the principle of these two kinds of preparation methods, and the specific problems of the process are analyzed and summarized. </p>

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Ding Hualun

This paper chooses magnesium as the matrix of composite materials, selects carbon fi ber as reinforcement, anddesigns the composite scheme according to the structure and performance of Mg-based composites. The performancecharacteristics and application prospect of fiber-reinforced magnesium matrix composites are introduced. Wait. Inthis paper, the process of preparing carbon fi ber magnesium matrix composites by compression casting method andspray deposition method is designed. The process fl ow chart of these two design schemes is determined by analyzingthe principle of these two kinds of preparation methods, and the specifi c problems of the process are analyzed andsummarized.


2020 ◽  
Vol 55 (36) ◽  
pp. 16940-16953
Author(s):  
Jiming Zhou ◽  
Kangdi Zhong ◽  
Chentong Zhao ◽  
Haiming Meng ◽  
Lehua Qi

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5182
Author(s):  
Katarzyna N. Braszczyńska-Malik

In this paper, a summary of investigations of the microstructure of cast magnesium matrix composites is presented. Analyses of the interfaces between the reinforcing particles and the magnesium alloy matrices were performed. Technically pure magnesium and four various alloys with aluminum and rare earth elements (RE) were chosen as the matrix. The composites were reinforced with SiC and Ti particles, as well as hollow aluminosilicate cenospheres. Microstructure analyses were carried out by light, scanning, and transmission electron microscopy. The composites with the matrix of magnesium and magnesium–aluminum alloys with SiC and Ti particles exhibited coherent interfaces between the components. In the composites based on ternary magnesium alloy with Al and RE with Ti particles, a high-melting Al2RE phase nucleated on the titanium. Different types of interfaces between the components were observed in the composites based on the magnesium–rare earth elements alloy with SiC particles, in which a chemical reaction between the components caused formation of the Re3Si2 phase. Intensive chemical reactions between the components were also observed in the composites with aluminosilicate cenospheres. Additionally, the influence of coatings created on the aluminosilicate cenospheres on the bond with the magnesium matrix was presented. A scheme of the types of interfaces between the components is proposed.


2019 ◽  
Vol 70 (8) ◽  
pp. 2903-2907
Author(s):  
Ruxandra Elena Dumitrescu ◽  
Ioana Arina Gherghescu ◽  
Sorin Ciuca ◽  
Mariana Ciurdas ◽  
Daniela Alina Necsulescu ◽  
...  

Two magnesium matrix composites reinforced with 3 and 10% Ni-Ti particulates, respectively, were obtained by plasma sintering. The reinforcement material was obtained by grinding a mixture of powders of 68% Ni and 32% Ti atomic percent in a high energy mill for 40 hours. Particulates resulting from mechanical alloying have a partially amorphous and partially nanocrystalline structure, consisting of the following phases: Ni solid solution, Ti2Ni and NiTi (B2) phase. After sintering, both the matrix and the reinforcement material are nanocrystalline and the particulates have a polyphase structure, consisting of Ni(Ti), NiTi (R phase) and Ni4Ti3. The hardness of these composites is superior to the hardness of magnesium matrix composites reinforced with Ni-Ti particulates having 50% Ni / 50% Ti and 32% Ni / 68% Ti chemical compositions obtained under the same conditions and corresponding proportions of reinforcement material.


Sign in / Sign up

Export Citation Format

Share Document