Effect of carbon nanotubes grown temperature on the fracture behavior of carbon fiber reinforced magnesium matrix composites: Interlaminar shear strength and tensile strength

Author(s):  
Jiming Zhou ◽  
Kangdi Zhong ◽  
Chentong Zhao ◽  
Haiming Meng ◽  
Lehua Qi
2019 ◽  
Vol 41 (4) ◽  
pp. 655-655
Author(s):  
Muhammad Abdul Basit Muhammad Abdul Basit ◽  
Sybt e anwar Qais Sybt e anwar Qais ◽  
Muhammad Saffee Ullah Malik and Ghufran Ur Rehman Muhammad Saffee Ullah Malik and Ghufran Ur Rehman ◽  
Faizan Siddique Awan Faizan Siddique Awan ◽  
Laraib Alam Khan and Tayyab Subhani Laraib Alam Khan and Tayyab Subhani

Carbon fiber reinforced polymeric matrix composites are enormously used in aerospace and automotive industries due to their enhanced specific properties. However, the area of interlaminar shear properties still needs investigation so as to produce composites with improved through-the-thickness properties. To improve interlaminar shear properties of these composites, acid-functionalized multiwalled carbon nanotubes were deposited on de-sized carbon fibers through electrophoretic deposition. De-sizing of carbon fabric was performed through three different methods: furnace heating, acidic treatment and chloroform usage. As the acid-treatment provided better results than other two techniques, the acid-de-sized carbon fibers were coated with nanotubes and subsequently incorporated in epoxy matrix to prepare a novel class of multiscale composites using vacuum assisted resin transfer molding technique. Nearly 30% rise in the interlaminar shear strength of the composites was obtained which was credited to the coating of nanotubes on the surface of carbon fibers. The increased adhesion between carbon fibers and epoxy matrix due to mechanical interlocking of nanotubes was found to be the possible reason of improved interlaminar shear properties.


2020 ◽  
Vol 55 (36) ◽  
pp. 16940-16953
Author(s):  
Jiming Zhou ◽  
Kangdi Zhong ◽  
Chentong Zhao ◽  
Haiming Meng ◽  
Lehua Qi

2011 ◽  
Vol 686 ◽  
pp. 482-487
Author(s):  
Wan Chang Sun ◽  
He Jun Li ◽  
Qian Gang Fu ◽  
Shou Yang Zhang

PAN-carbon fibers were pretreated using three methods. 2D-C/C composites were fabricated by a rapid chemical liquid-vaporized infiltration (CLVI) processing. Surface morphologies of carbon fiber pretreated and fracture micrographs of 2D-C/C composites were observed by scanning electron microscopy (SEM) and high resolution transmission electron microscope (HRTEM). The interlaminar shear strength(ILSS) of C/C composites was tested. The influences of carbon fiber surface pretreatments on ILSS and fracture behaviors of C/C composites were analyzed. The experimental results indicated that the C/C composite with carbon fiber coated CVI pyrocarbon possesses both higher flexural strength and interlaminar shear strength than composites with other fiber pretreatments. The fractographes revealed the differences in the mechanical behavior depending on the interface strength of fiber/matrix.


2009 ◽  
Vol 79-82 ◽  
pp. 497-500 ◽  
Author(s):  
Lei Chen ◽  
Zhi Wei Xu ◽  
Jia Lu Li ◽  
Xiao Qing Wu ◽  
Li Chen

The γ-ray co-irradiation method was employed to study the effect of diethanolamine modification on the surface of carbon fiber (CF) and the interfacial properties of CF/epoxy composites. Compared with the original carbon fiber, the surface of modified fibers became rougher. The amount of oxygen-containing functional groups was increased and the nitrogen element was detected after irradiation grafting. The interlaminar shear strength (ILSS) of composites reinforced by carbon fibers irradiated in diethanolamine solution was increased and then decreased as the irradiation dose increased. The ILSS of CF/epoxy composites was enhanced by 16.1% at 200kGy dose, compared with that of untreated one. The γ-ray irradiation grafting is expected to be a promising method for the industrialized modification of carbon fibers.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-38
Author(s):  
Yasuka Nassho ◽  
Kazuaki Sanada

The purpose of this study is to improve interlaminar shear strength and self-healing efficiency of spread carbon fiber (SCF)/epoxy (EP) laminates containing microcapsules. Microencapsulated healing agents were embedded within the laminates to impart a self-healing functionality. Self-healing was demonstrated on short beam shear specimens, and the healing efficiency was evaluated by strain energies of virgin and healed specimens. The effects of microcapsule concentration and diameter on apparent interlaminar shear strength and healing efficiency were discussed. Moreover, damaged areas after short beam shear tests were examined by an optical microscope to investigate the relation between the microstructure and the healing efficiency of the laminates. The results showed that the stiffness and the apparent interlaminar shear strength of the laminates increased as the microcapsule concentration and diameter decreased. However, the healing efficiency decreased with decreasing the microcapsule concentration and diameter.


Sign in / Sign up

Export Citation Format

Share Document