scholarly journals Classification of plumage images for identifying bird species

2021 ◽  
Vol 5 (45) ◽  
pp. 749-755
Author(s):  
A.V. Belko ◽  
K.S. Dobratulin ◽  
A.V. Kuznetsov

This paper studies the possibility of using neural networks to classify plumage images in order to identify bird species. Taxonomic identification of bird plumage is widely used in aviation ornithology to analyze collisions with aircraft and develop methods for their prevention. This article provides a method for bird species identification based on a dataset made up in the previous research. A method for identifying birds from real-world images based on YoloV4 neural networks and DenseNet models is proposed. We present results of the feather classification task. We selected several deep learning architectures (DenseNet based) for a comparison of categorical crossentropy values on the provided dataset. The experimental evaluation has shown that the proposed method allows determining the bird species from a photo of an individual feather with an accuracy of up to 81.03 % for accurate classification, and with an accuracy of 97.09 % for the first five predictions.

Author(s):  
Sameerchand Pudaruth ◽  
Sunjiv Soyjaudah ◽  
Rajendra Gunputh

Laws are often developed in a piecemeal approach and many provisions of similar nature are often found in different legislations. Therefore, there is a need to classify legislations into various legal topics to help legal professionals in their daily activities. In this study, we have experimented with various deep learning architectures for the automatic classification of 490 legislations from the Republic of Mauritius into 30 categories. Our results demonstrate that a Deep Neural Network (DNN) with three hidden layers delivered the best performance compared with other architectures such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). A mean classification accuracy of 60.9% was achieved using DNN, 56.5% for CNN and 33.7% for Long Short-Term Memory (LSTM). Comparisons were also made with traditional machine learning classifiers such as support vector machines and decision trees and it was found that the performance of DNN was superior, by at least 10%, in all runs. Both general pre-trained word embeddings such as Word2vec and domain-specific word embeddings such as Law2vec were used in combination with the above deep learning architectures but Word2vec had the best performance. To our knowledge, this is the first application of deep learning in the categorisation of legislations.


2021 ◽  
Author(s):  
Radwa Elshawi ◽  
Abdul Wahab ◽  
Ahmed Barnawi ◽  
Sherif Sakr

AbstractDeep Learning (DL) has achieved remarkable progress over the last decade on various tasks such as image recognition, speech recognition, and natural language processing. In general, three main crucial aspects fueled this progress: the increasing availability of large amount of digitized data, the increasing availability of affordable parallel and powerful computing resources (e.g., GPU) and the growing number of open source deep learning frameworks that facilitate and ease the development process of deep learning architectures. In practice, the increasing popularity of deep learning frameworks calls for benchmarking studies that can effectively evaluate and understand the performance characteristics of these systems. In this paper, we conduct an extensive experimental evaluation and analysis of six popular deep learning frameworks, namely, TensorFlow, MXNet, PyTorch, Theano, Chainer, and Keras, using three types of DL architectures Convolutional Neural Networks (CNN), Faster Region-based Convolutional Neural Networks (Faster R-CNN), and Long Short Term Memory (LSTM). Our experimental evaluation considers different aspects for its comparison including accuracy, training time, convergence and resource consumption patterns. Our experiments have been conducted on both CPU and GPU environments using different datasets. We report and analyze the performance characteristics of the studied frameworks. In addition, we report a set of insights and important lessons that we have learned from conducting our experiments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam Goodwin ◽  
Sanket Padmanabhan ◽  
Sanchit Hira ◽  
Margaret Glancey ◽  
Monet Slinowsky ◽  
...  

AbstractWith over 3500 mosquito species described, accurate species identification of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open-set problem with a detection algorithm for novel species. Closed-set classification of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed-set classification of 39 species produces a macro F1-score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild-caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andre Esteva ◽  
Katherine Chou ◽  
Serena Yeung ◽  
Nikhil Naik ◽  
Ali Madani ◽  
...  

AbstractA decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields—including medicine—to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques—powered by deep learning—for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit—including cardiology, pathology, dermatology, ophthalmology–and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.


2020 ◽  
Vol 3 (1) ◽  
pp. 445-454
Author(s):  
Celal Buğra Kaya ◽  
Alperen Yılmaz ◽  
Gizem Nur Uzun ◽  
Zeynep Hilal Kilimci

Pattern classification is related with the automatic finding of regularities in dataset through the utilization of various learning techniques. Thus, the classification of the objects into a set of categories or classes is provided. This study is undertaken to evaluate deep learning methodologies to the classification of stock patterns. In order to classify patterns that are obtained from stock charts, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory networks (LSTMs) are employed. To demonstrate the efficiency of proposed model in categorizing patterns, hand-crafted image dataset is constructed from stock charts in Istanbul Stock Exchange and NASDAQ Stock Exchange. Experimental results show that the usage of convolutional neural networks exhibits superior classification success in recognizing patterns compared to the other deep learning methodologies.


Biotechnology ◽  
2019 ◽  
pp. 562-575
Author(s):  
Suraj Sawant

Deep learning (DL) is a method of machine learning, as running over artificial neural networks, which has a structure above the standards to deal with large amounts of data. That is generally because of the increasing amount of data, input data sizes, and of course, greater complexity of objective real-world problems. Performed research studies in the associated literature show that the DL currently has a good performance among considered problems and it seems to be a strong solution for more advanced problems of the future. In this context, this chapter aims to provide some essential information about DL and its applications within the field of biomedical engineering. The chapter is organized as a reference source for enabling readers to have an idea about the relation between DL and biomedical engineering.


Sign in / Sign up

Export Citation Format

Share Document