scholarly journals DYNAMICS OF FUNCTIONAL INTERHEMISPHERIC ASYMMETRY AND PARTICULARITIES OF VARIABILITY OF THE CARDIAC RHYTHM IN CHILDREN OF 7-8 YEARS IN THE INFORMATION LOAD

2017 ◽  
Vol 19 (3) ◽  
pp. 168-176
Author(s):  
M.A. Paramonova ◽  
O.A. Vedyasova ◽  
A.I. Lukina ◽  
E.S. Karpova

During the information loading in children, the changes of coefficient of functional asymmetry, reflecting strengthening role of left hemisphere in realization of mental activity in the age of 7 to 8 years are revealed. At the same time, shifts of diagnostic parameters of variability of cardiac rhythm depending on age, sex and direction of changes in coefficient of asymmetry are found. Most pronounced changes were found in indexes of activity of sympathetic and parasympathetic nervous system, thus more noticeable change by sympathetic nervous system at loading was observed in girls of the first class, and parasympathetic — in boys of the second class. Dependence of changes of coefficient of functional asymmetry at loading of reference values is established in sympathetic nervous system and Bayevsky index at right-handed persons of 8 years.

2021 ◽  
Vol 12 ◽  
Author(s):  
Liliana Espinoza ◽  
Stephanie Fedorchak ◽  
Carie R. Boychuk

There is consensus that the heart is innervated by both the parasympathetic and sympathetic nervous system. However, the role of the parasympathetic nervous system in controlling cardiac function has received significantly less attention than the sympathetic nervous system. New neuromodulatory strategies have renewed interest in the potential of parasympathetic (or vagal) motor output to treat cardiovascular disease and poor cardiac function. This renewed interest emphasizes a critical need to better understand how vagal motor output is generated and regulated. With clear clinical links between cardiovascular and metabolic diseases, addressing this gap in knowledge is undeniably critical to our understanding of the interaction between metabolic cues and vagal motor output, notwithstanding the classical role of the parasympathetic nervous system in regulating gastrointestinal function and energy homeostasis. For this reason, this review focuses on the central, vagal circuits involved in sensing metabolic state(s) and enacting vagal motor output to influence cardiac function. It will review our current understanding of brainstem vagal circuits and their unique position to integrate metabolic signaling into cardiac activity. This will include an overview of not only how metabolic cues alter vagal brainstem circuits, but also how vagal motor output might influence overall systemic concentrations of metabolic cues known to act on the cardiac tissue. Overall, this review proposes that the vagal brainstem circuits provide an integrative network capable of regulating and responding to metabolic cues to control cardiac function.


1981 ◽  
Vol 97 (1) ◽  
pp. 91-97 ◽  
Author(s):  
H. Storm ◽  
C. van Hardeveld ◽  
A. A. H. Kassenaar

Abstract. Basal plasma levels for adrenalin (A), noradrenalin (NA), l-triiodothyronine (T3), and l-thyroxine (T4) were determined in rats with a chronically inserted catheter. The experiments described in this report were started 3 days after the surgical procedure when T3 and T4 levels had returned to normal. Basal levels for the catecholamines were reached already 4 h after the operation. The T3/T4 ratio in plasma was significantly increased after 3, 7, and 14 days in rats kept at 4°C and the same holds for the iodide in the 24-h urine after 7 and 14 days at 4°C. The venous NA plasma concentration was increased 6- to 12-fold during the same period of exposure to cold, whereas the A concentration remained at the basal level. During infusion of NA at 23°C the T3/T4 ratio in plasma was significantly increased after 7 days compared to pair-fed controls, and the same holds for the iodide excretion in the 24-h urine. This paper presents further evidence for a role of the sympathetic nervous system on T4 metabolism in rats at resting conditions.


2008 ◽  
Vol 4 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Kazuko Masuo ◽  
Gavin Lambert ◽  
Hiromi Rakugi ◽  
Toshio Ogihara ◽  
Murray Esler

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Costas Tsioufis ◽  
Athanasios Kordalis ◽  
Dimitris Flessas ◽  
Ioannis Anastasopoulos ◽  
Dimitris Tsiachris ◽  
...  

Resistant hypertension (RH) is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS) activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.


Sign in / Sign up

Export Citation Format

Share Document