scholarly journals Inherent optical properties of large lakes in the middle-lower reaches of the Yangtze River: Ⅰ. Absorption

2013 ◽  
Vol 25 (4) ◽  
pp. 497-504 ◽  
Author(s):  
WANG Changfeng ◽  
◽  
DUAN Hongtao ◽  
MA Ronghua ◽  
ZHANG Yuchao
2016 ◽  
Vol 36 (1) ◽  
Author(s):  
黄琪 HUANG Qi ◽  
高俊峰 GAO Junfeng ◽  
张艳会 ZHANG Yanhui ◽  
闫人华 YAN Renhua ◽  
王雁 WANG Yan ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 8255-8259

Aerosols played an important role in climate change during recent years in China. Many kinds of researches in different areas in China, particularly over the Yangtze River Delta (YRD) region in East China is measured during the period from January 2013 to December 2015. The Moderate Resolution Imaging Spectroradiometer (MODIS) derived aerosol optical depth (AOD), particulate matter concentrations (PM2.5) and surface black carbon (BCS) was used in this study. Nanjing, Hangzhou, Shanghai, and Ningbo have been selected in this research as they are the major cities of the YRD region that represents different environments. Variation of AOD550, Ångström exponent (AE470-660) and PM2.5 are mainly discussed, and meanwhile, the relationship that exists between them and with the meteorology is also discussed in this work. Apart from this, the impact of visibility and water vapor are also considered to examine the influence on optical properties. The data and analysis indicate that urban cities have a higher value of AOD than rural background cities. High AOD was noticed in summer than in other seasons. AOD usually has a negative relationship with AE, except in summer. Similarly, the PM2.5 has a negative relationship with AOD, whereas, BCS has a positive correlation with AOD. Further, it was observed that the rise in temperature resulted in high AOD concentration. The visibility has negative effect on AOD, whereas, AQI follows similar pattern as that of visibility.


2021 ◽  
Vol 13 (21) ◽  
pp. 4322
Author(s):  
Yingchun Bian ◽  
Ying Zhao ◽  
Heng Lyu ◽  
Fei Guo ◽  
Yunmei Li ◽  
...  

The Yangtze River Delta (YRD) is one of the regions with the most intensive human activities. The eutrophication of lakes in this area is becoming increasingly serious with consequent negative impacts on the water supply of the surrounding cities. But the spatial-temporal characteristics and driving factors of the trophic state of the lake in this region are still not clearly addressed. In this study, a semi-analytical algorithm for estimating the trophic index (TSI) using particle absorption at 645 nm based on MODIS images is proposed to monitor and evaluate the trophic state of 41 large lakes (larger than 10 km2) in the YRD from 2002 to 2020. The performance of the proposed algorithm is evaluated using an independent dataset. Results showed that the root-mean-square error (RMSE) of the algorithm is less than 6 and the mean absolute percentage error (MAPE) does not exceed 8%, indicating that it can be applied for remotely deriving the TSI in the YRD. The spatial-temporal patterns revealed that there were significantly more lakes with moderate eutrophication in the Lower Yangtze River (LYR) than in the Lower Huaihe River (LHR). The overall average value of the TSI reaches a maximum in summer and a minimum in winter. The TSI value in the YRD over the period 2002–2020 showed a downward trend, especially after 2013. Individually, 33 lakes showed a downward trend and 8 lakes showed an upward trend. Furthermore, marked seasonal and interannual temporal variations can be clearly observed in the LYR and LHR and the sum of the variance contributions of seasonal and interannual components is more than 50%. Multiple linear regression analysis showed that human activities can explain 65% of the variation in the lake TSI in the YRD.


2017 ◽  
Vol 190 ◽  
pp. 107-121 ◽  
Author(s):  
Xuejiao Hou ◽  
Lian Feng ◽  
Hongtao Duan ◽  
Xiaoling Chen ◽  
Deyong Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document