Some Results on the Extended Hypergeometric Function

2020 ◽  
Vol 87 (1-2) ◽  
pp. 70
Author(s):  
Ranjan Kumar Jana ◽  
Bhumika Maheshwari ◽  
Ajay Kumar Shukla

An attempt is made to define the extended Pochhammer symbol <em>(λ)n,α</em> which leads to an extension of the classical hypergeometric functions. Differential equations and some properties have also been discussed.

2016 ◽  
Vol 09 (03) ◽  
pp. 1650064 ◽  
Author(s):  
Vivek Sahai ◽  
Ashish Verma

The main object of this paper is to present a generalization of the Pochhammer symbol. We present some contiguous relations of this generalized Pochhammer symbol and use it to give an extension of the generalized hypergeometric function [Formula: see text]. Finally, we present some properties and generating functions of this extended generalized hypergeometric function.


2020 ◽  
Vol 27 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Junesang Choi ◽  
Rakesh K. Parmar ◽  
Purnima Chopra

AbstractMotivated mainly by certain interesting recent extensions of the generalized hypergeometric function [H. M. Srivastava, A. Çetinkaya and I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 2014, 484–491] by means of the generalized Pochhammer symbol, we introduce here a new extension of the generalized Mittag-Leffler function. We then systematically investigate several properties of the extended Mittag-Leffler function including some basic properties, Mellin, Euler-Beta, Laplace and Whittaker transforms. Furthermore, certain properties of the Riemann–Liouville fractional integrals and derivatives associated with the extended Mittag-Leffler function are also investigated. Some interesting special cases of our main results are pointed out.


1992 ◽  
Vol 44 (6) ◽  
pp. 1317-1338 ◽  
Author(s):  
Zhimin Yan

AbstractWe study a class of generalized hypergeometric functions in several variables introduced by A. Korânyi. It is shown that the generalized Gaussian hypergeometric function is the unique solution of a system partial differential equations. Analogues of some classical results such as Kummer relations and Euler integral representations are established. Asymptotic behavior of generalized hypergeometric functions is obtained which includes some known estimates.


1969 ◽  
Vol 65 (3) ◽  
pp. 591-595 ◽  
Author(s):  
G. E. Barr

Let the generalized hypergeometric function of one variable be denoted bywhere (a)m is the Pochhammer symbol ((1, 3)).


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Anvar Hasanov ◽  
Jihad Younis ◽  
Hassen Aydi

Recently, hypergeometric functions of four variables are investigated by Bin-Saad and Younis. In this manuscript, our goal is to initiate a new quadruple hypergeometric function denoted by X 84 4 , and then, we ensure the existence of solutions of systems of partial differential equations for this function. We also establish some integral representations involving the quadruple hypergeometric function X 84 4 .


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Maged G. Bin-Saad ◽  
Anvar Hasanov

In investigation of boundary-value problems for certain partial differential equations arising in applied mathematics, we often need to study the solution of system of partial differential equations satisfied by hypergeometric functions and find explicit linearly independent solutions for the system. Here we choose the Exton function K2 among his 21 functions to show how to find the linearly independent solutions of partial differential equations satisfied by this function K2. Based upon the classical derivative and integral operators, we introduce a new operational images for hypergeometric function K2. By means of these operational images, a number of finite series and decomposition formulas are then found.


2015 ◽  
Vol 08 (04) ◽  
pp. 1550082 ◽  
Author(s):  
Vivek Sahai ◽  
Ashish Verma

Recently, Opps, Saad and Srivastava [Recursion formulas for Appell’s hypergeometric function [Formula: see text] with some applications to radiation field problems, Appl. Math. Comput. 207 (2009) 545–558] presented the recursion formulas for Appell’s function [Formula: see text] and also gave its applications to radiation field problems. Then Wang [Recursion formulas for Appell functions, Integral Transforms Spec. Funct. 23(6) (2012) 421–433] obtained the recursion formulas for Appell functions [Formula: see text] and [Formula: see text]. In our investigation here, we derive the recursion formulas for 14 three-variable Lauricella functions, three Srivastava’s triple hypergeometric functions and four [Formula: see text]-variable Lauricella functions.


2020 ◽  
Vol 12 (1) ◽  
pp. 129-137 ◽  
Author(s):  
L. Bedratyuk ◽  
N. Luno

Let $x^{(n)}$ denotes the Pochhammer symbol (rising factorial) defined by the formulas $x^{(0)}=1$ and $x^{(n)}=x(x+1)(x+2)\cdots (x+n-1)$ for $n\geq 1$. In this paper, we present a new real-valued Appell-type polynomial family $A_n^{(k)}(m,x)$, $n, m \in {\mathbb{N}}_0$, $k \in {\mathbb{N}},$ every member of which is expressed by mean of the generalized hypergeometric function ${}_{p} F_q \begin{bmatrix} \begin{matrix} a_1, a_2, \ldots, a_p \:\\ b_1, b_2, \ldots, b_q \end{matrix} \: \Bigg| \:z \end{bmatrix}= \sum\limits_{k=0}^{\infty} \frac{a_1^{(k)} a_2^{(k)} \ldots a_p^{(k)}}{b_1^{(k)} b_2^{(k)} \ldots b_q^{(k)}} \frac{z^k}{k!}$ as follows $$ A_n^{(k)}(m,x)= x^n{}_{k+p} F_q \begin{bmatrix} \begin{matrix} {a_1}, {a_2}, {\ldots}, {a_p}, {\displaystyle -\frac{n}{k}}, {\displaystyle -\frac{n-1}{k}}, {\ldots}, {\displaystyle-\frac{n-k+1}{k}}\:\\ {b_1}, {b_2}, {\ldots}, {b_q} \end{matrix} \: \Bigg| \: \displaystyle \frac{m}{x^k} \end{bmatrix} $$ and, at the same time, the polynomials from this family are Appell-type polynomials. The generating exponential function of this type of polynomials is firstly discovered and the proof that they are of Appell-type ones is given. We present the differential operator formal power series representation as well as an explicit formula over the standard basis, and establish a new identity for the generalized hypergeometric function. Besides, we derive the addition, the multiplication and some other formulas for this polynomial family.


Author(s):  
T.G. Ergashev ◽  
A. Hasanov

In the present work, we investigate the Holmgren problem for an multidimensional elliptic equation with several singular coefficients. We use a fundamental solution of the equation, containing Lauricella’s hypergeometric function in many variables. Then using an «abc» method, the uniqueness for the solution of the Holmgren problem is proved. Applying a method of Green’s function, we are able to find the solution of the problem in an explicit form. Moreover, decomposition and summation formulae, formulae of differentiation and some adjacent relations for Lauricella’s hypergeometric functions in many variables were used in order to find the explicit solution for the formulated problem. В данной работе мы исследуем задачу Холмгрена для многомерного эллиптического уравнения с несколькими сингулярными коэффициентами. Мы используем фундаментальное решение уравнения, содержащее гипергеометрическую функцию Лауричеллы от многих переменных. Затем методом «abc» доказывается единственность решения проблемы Холмгрена. Применяя метод функции Грина, мы можем найти решение задачи в явном виде. Более того, формулы разложения и суммирования, формулы дифференцирования и некоторые смежные соотношения для гипергеометрических функций Лауричеллы от многих переменных были использованы для нахождения явного решения поставленной задачи.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Samuel Abreu ◽  
Ruth Britto ◽  
Claude Duhr ◽  
Einan Gardi ◽  
James Matthew

Abstract The diagrammatic coaction maps any given Feynman graph into pairs of graphs and cut graphs such that, conjecturally, when these graphs are replaced by the corresponding Feynman integrals one obtains a coaction on the respective functions. The coaction on the functions is constructed by pairing a basis of differential forms, corresponding to master integrals, with a basis of integration contours, corresponding to independent cut integrals. At one loop, a general diagrammatic coaction was established using dimensional regularisation, which may be realised in terms of a global coaction on hypergeometric functions, or equivalently, order by order in the ϵ expansion, via a local coaction on multiple polylogarithms. The present paper takes the first steps in generalising the diagrammatic coaction beyond one loop. We first establish general properties that govern the diagrammatic coaction at any loop order. We then focus on examples of two-loop topologies for which all integrals expand into polylogarithms. In each case we determine bases of master integrals and cuts in terms of hypergeometric functions, and then use the global coaction to establish the diagrammatic coaction of all master integrals in the topology. The diagrammatic coaction encodes the complete set of discontinuities of Feynman integrals, as well as the differential equations they satisfy, providing a general tool to understand their physical and mathematical properties.


Sign in / Sign up

Export Citation Format

Share Document