scholarly journals Advanced Numerical Solver for Dam-Break Flow Application

2011 ◽  
Vol 14 (1) ◽  
pp. 73
Author(s):  
Jaan Hui Pu ◽  
Zhumabay Bakenov ◽  
Desmond Adair

In this paper, a HLL (Harten Lax van Leer) approximate Riemann solver with MUSCL scheme (Monotonic Upwind Schemes for Conservative Laws) is implemented in the presented FV (Finite Volume) model. The presented model is used to simulate different dam-break flow events to verify its capability. Four test cases are presented in this paper. In the first test case, a 1-Dimensional (1D) dambreak flow is simulated over a rectangular channel with different slope limiters of the FV model (namely Godunov, Superbee, Minmod, van Leer, and van Albada). The second test case consists of a simulation of shallow water discontinuous dam-break flow over a dry-downstream bed channel. The third test simulates the shallow water dam-break flow with the existence of bed slope and bed shear stress. Finally, in the last test, the HLL-MUSCL model used in this paper and some other solver models used in literature are compared against the referred exact solution in dam-break flow application. The presented HLL-MUSCL scheme is found to give the best agreement to the exact solution.

2020 ◽  
Vol 146 (2) ◽  
pp. 06019020 ◽  
Author(s):  
Bo Wang ◽  
Yunliang Chen ◽  
Yong Peng ◽  
Jianmin Zhang ◽  
Yakun Guo

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Szu-Hsien Peng

The purpose of this study is to model the flow movement in an idealized dam-break configuration. One-dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed is considered. The resulting shallow water equations are solved by finite volumes using the Roe and HLL schemes. At first, the one-dimensional model is considered in the development process. With conservative finite volume method, splitting is applied to manage the combination of hyperbolic term and source term of the shallow water equation and then to promote 1D to 2D. The simulations are validated by the comparison with flume experiments. Unsteady dam-break flow movement is found to be reasonably well captured by the model. The proposed concept could be further developed to the numerical calculation of non-Newtonian fluid or multilayers fluid flow.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Nugool Sataporn ◽  
Worasait Suwannik ◽  
Montri Maleewong

Compute Unified Device Architecture (CUDA) implementations are presented of a well-balanced finite volume method for solving a shallow water model. The CUDA platform allows programs to run parallel on GPU. Four versions of the CUDA algorithm are presented in addition to a CPU implementation. Each version is improved from the previous one. We present the following techniques for optimizing a CUDA program: limiting register usage, changing the global memory access pattern, and using loop unroll. The accuracy of all programs is investigated in 3 test cases: a circular dam break on a dry bed, a circular dam break on a wet bed, and a dam break flow over three humps. The last parallel version shows 3.84x speedup over the first CUDA implementation. We use our program to simulate a real-world problem based on an assumed partial breakage of the Srinakarin Dam located in Kanchanaburi province, Thailand. The simulation shows that the strong interaction between massive water flows and bottom elevations under wet and dry conditions is well captured by the well-balanced scheme, while the optimized parallel program produces a 57.32x speedup over the serial version.


2007 ◽  
Vol 29 (4) ◽  
pp. 539-550
Author(s):  
Hoang Van Lai ◽  
Nguyen Thanh Don

In this paper the numerical method for the shallow water equations is studied. The paper consists of 3 sections. In the section 1 the theoretical basis and software IMECI-L2DBREAK for simulation of the 2D dam-break or dyke-break flows is outlined. In the section 2 some results in verification of the IMECH_2DBREAK by the test cases proposed in the big European Hydraulics Laboratories are shown. In the last section some applications of IMECH_2DBREAK for the inundation problem in the Red river delta in the Northern of Vietnam are presented.


2011 ◽  
Vol 05 (05) ◽  
pp. 401-428 ◽  
Author(s):  
PENGZHI LIN ◽  
YINNA WU ◽  
JUNLI BAI ◽  
QUANHONG LIN

Dam-break flows are simulated numerically by a two-dimensional shallow-water-equation model that combines a hydrodynamic module and a sediment transport module. The model is verified by available analytical solutions and experimental data. It is demonstrated that the model is a reliable tool for the simulation of various transient shallow water flows and the associated sediment transport and bed morphology on complex topography. The validated model is then applied to investigate the potential dam-break flows from Tangjiashan Quake Lake resulting from Wenchuan Earthquake in 2008. The dam-break flow evolution is simulated by using the model in order to provide the flooding patterns (e.g., arrival time and flood height) downstream. Furthermore, the sediment transport and bed morphology simulation is performed locally to study the bed variation under the high-speed dam-break flow.


2009 ◽  
Vol 6 (6) ◽  
pp. 6759-6793 ◽  
Author(s):  
C. Biscarini ◽  
S. Di Francesco ◽  
P. Manciola

Abstract. This paper presents numerical simulations of free surface flows induced by a dam break comparing the shallow water approach to fully three-dimensional simulations. The latter are based on the solution of the complete set of Reynolds-Averaged Navier-Stokes (RANS) equations coupled to the Volume of Fluid (VOF) method. The methods assessment and comparison are carried out on a dam break over a flat bed without friction and a dam break over a triangular bottom sill. Experimental and numerical literature data are compared to present results. The results demonstrate that the shallow water approach loses some three-dimensional phenomena, which may have a great impact when evaluating the downstream wave propagation. In particular, water wave celerity and water depth profiles could be underestimated due to the incorrect shallow water idealization that neglects the three-dimensional aspects due to the gravity force, especially during the first time steps of the motion.


2016 ◽  
Vol 18 (4) ◽  
pp. 702-723 ◽  
Author(s):  
Babak Fazli Malidareh ◽  
Seyed Abbas Hosseini ◽  
Ebrahim Jabbari

This paper presents a new meshless numerical scheme to overcome the problem of shock waves and to apply boundary conditions in cases of dam-break flows in channels with constant and variable widths. The numerical program solves shallow water equations based on the discrete mixed subdomain least squares (DMSLS) meshless method with collocation points. The DMSLS meshless method is based on the minimization of a least squares functional defined as the weighted summation of the squared residuals of the governing equations over the entire domain and requiring the summation of residual function to be zero at collocation points in boundary subdomains. The collocated discrete subdomain meshless method is applied on the boundary, whereas the collocated discrete least squares meshless technique is applied to the interior domain. The meshless scheme extends for dam-break formulation of shallow water equations. The model is verified by comparing computed results with analytical and experimental data for constant and varying width channels. The developed model is also used to study one-dimensional dam-break problems involving different flow situations by considering changes to the channel width, a bumpy channel with various downstream boundary conditions, and the effects of bed friction and bed slope as source terms on wave propagation. The accuracy of the results is acceptable.


2020 ◽  
Vol 6 (3) ◽  
pp. 237
Author(s):  
Putu Indah Dianti Putri ◽  
Rifqi Fauzan Iskandar ◽  
Mohammad Bagus Adityawan ◽  
Hadi Kardhana ◽  
Dian Indrawati

Dam break causes disastrous effects on the surrounding area, especially at the downstream, therefore, there is a need for accurate and timely predictions of dam break propagation to prevent both property damage and loss of life. This study aimed to determine the movement of dam-break flow in the downstream area by solving the Shallow Water Equations (SWE) or Saint Venant Equations which are based on the conservation of mass and momentum derived from Navier Stokes equation. The model was generated using a finite difference scheme which is the most common and simplest method for dam-break modeling while Forward Time Central Space (FTCS) numerical scheme was applied to simulate two-dimensional SWE. Moreover, the accuracy of the numerical model was checked by comparing its results with the analytic results of one-dimensional cases and a relatively small value of error was found in comparison to the analytic models as indicated with the RMSE values close to 0. The numerical to the two-dimensional models were also compared to a simple dam break in a flume and dam break with column interactions and the wave propagation in both cases was observed to become very close at a certain time.  The model, however, used numerical filter (Hansen) to reduce the oscillations or numerical instability. The simulation and analysis, therefore, showed the ability of the numerical scheme of FTCS to resolve both cases of the simple dam break and dam break with column interactions in the Two-dimensional Shallow Water. 


Sign in / Sign up

Export Citation Format

Share Document