scholarly journals Effects of Moisture Content and Solvent Additive on Headspace Solid-Phase Microextraction of Total Petroleum Hydrocarbons from Soil

2012 ◽  
Vol 14 (4) ◽  
pp. 331 ◽  
Author(s):  
M.B. Alimzhanova ◽  
B.N. Kenessov ◽  
M.K. Nauryzbayev ◽  
J.A. Koziel

Present paper describes optimization of the method of quantitative determination of total petroleum hydrocarbons in soil samples using headspace solid - phase microextraction (SPME) in combination with gas chromatography - mass spectrometry (GC-MS). Effects of moisture content and solvent additives<br />were studied. It was established that an increase of the moisture content in soil leads to an increase of the response of petroleum hydrocarbons reaching its maximum at 15-20% depending on the soil type and concentration of total petroleum hydrocarbons followed by its gradual decrease. For the same concentration of petroleum hydrocarbons, an increase of moisture content in soil from 0 to 20% may lead to a 15x increase of total petroleum hydrocarbons response by solid - phase microextraction. Determination of total petroleum hydrocarbons in soils by SPME -GC-MS without moisture control of samples may lead to large errors, especially at low concentrations. It was established that addition of the solvent to a soil-water mixture allows dissolution of an oil film on the water surface and provides better extraction of hydrocarbons from soil to water phase. To avoid effect of moisture content on the extraction efficiency and more precise analysis of the real samples, addition of the excess distilled water must be done. Addition of the polar organic solvent to a soil-water mixture (10% isopropanol) allows dissolution of an oil film on the water surface and provides linear dependence of extraction efficiency vs total petroleum hydrocarbons content in soil. Testing of the optimized method on model soil samples provided quantitative data, results being in 30-120% range from the real values.

2016 ◽  
Vol 81 (8) ◽  
pp. 923-934 ◽  
Author(s):  
Rada Djurovic-Pejcev ◽  
Tijana Djordjevic ◽  
Vojislava Bursic

A method is described for simultaneous determination of five herbicides (metribuzin, acetochlor, clomazone, oxyfluorfen and dimethenamid) belonging to different pesticides groups in soil samples. Developed headspace solid phase microextraction method (HS-SPME) in combination with liquid-solid sample preparation (LS) was optimized and applied in the analysis of some agricultural samples. Optimization of microextraction conditions, such as temperature, extraction time and sodium chloride (NaCl) content was perfor-med using 100 ?m polydimethyl-siloxane (PDMS) fiber. The extraction effi-ciencies of methanol, methanol:acetone=1:1 and methanol:acetone:hexane= =2:2:1 and the optimum number of extraction steps during the sample prepa-ration, were tested, as well. Gas chromatography-mass spectrometry (GC-MS) was used for detection and quantification, obtaining relative standard deviation (RSD) below 13%, and recovery values higher than 83% for multiple analyses of soil samples fortified at 30 ?g kg-1 of each herbicide. Limits of detection (LOD) were less than 1.2 ?g kg-1 for all the studied herbicides.


2014 ◽  
Vol 37 (19) ◽  
pp. 2751-2756 ◽  
Author(s):  
Mengliang Zhang ◽  
Glen P. Jackson ◽  
Natalie A. Kruse ◽  
Jennifer R. Bowman ◽  
Peter de B. Harrington

2012 ◽  
Vol 95 (5) ◽  
pp. 1331-1337 ◽  
Author(s):  
Rada D Ðurović ◽  
Tijana M Ðorðević ◽  
Ljiljana R Šantrić

Abstract This paper describes development and validation of a multiresidue method for the determination of five pesticides (terbufos, prochloraz, chloridazon, pendimethalin, and fluorochloridone) belonging to different pesticide groups in soil samples by GC/MS, followed by its application in the analysis of some agricultural soil samples. The method is based on a headspace solid-phase microextraction method. Microextraction conditions, namely temperature, extraction time, and NaCl content, were tested and optimized using a 100 μm polydimethylsiloxane fiber. Three extraction solvents [methanol, methanol–acetone (1 + 1, v/v), and methanol–acetone–hexane (2 + 2 + 1, v/v/v)] and the optimum number of extraction steps within the sample preparation stage were optimized for the extraction procedure. LOD values for all the studied compounds were less than 12 μg/kg. Recovery values for multiple analyses of soil samples fortified at 30 μg/kg of each pesticide were higher than 64%. The method was proven to be repeatable, with RSD lower than 15%.


2011 ◽  
Vol 183-185 ◽  
pp. 184-187
Author(s):  
Bi Dong Su ◽  
Chen Zhen Min ◽  
Chen Dong Hui

Described is a solid-phase microextraction-gas chromatography mass spectrometric procedure for the determination of galaxolide (HHCB) in water solution samples. In which 100 μm PDMS coated fiber were used. From the optimization experiments of SPME, we found the direct sampling is necessary. The extraction time and temperature were 40min and 35°C, respectively. the salinity of the solution almost has no effect on the extraction efficiency and pH=7.0 was suitable for the extraction of HHCB. The method were applied to the urban sewage and river water respectively and found the content of HHCB in the urban sewage is 286ng/L, while those in river water below limit of quantification.


Sign in / Sign up

Export Citation Format

Share Document