1986 ◽  
Vol 18 (3) ◽  
pp. 23-33 ◽  
Author(s):  
R. J. Frankel ◽  
A. Phongsphetraratana

Two food processing industries in Thailand, namely pineapple canning and tuna/sardine canning, were studied over a 10 year period to document effects of water reuse, recycling and resource recovery (both energy and product) on waste treatment needs and actual operations. Changes in terms of water consumed, energy required, waste generated, and costs per ton of raw material processed were calculated. Lower overall annual costs resulted from all water conservation and energy recovery schemes even though stricter pollution control laws were the motivating factor behind the changes. Unit design parameters of water use, energy use and waste load generated per ton of raw material processed are included for both industries to permit extrapolations for future waste treatment plant designs.


2020 ◽  
Vol 9 (11) ◽  
pp. 1709-1717
Author(s):  
Rahul Sujanani ◽  
Matthew R. Landsman ◽  
Sally Jiao ◽  
Joshua D. Moon ◽  
M. Scott Shell ◽  
...  

2016 ◽  
Vol 6 (4) ◽  
pp. 466-475 ◽  
Author(s):  
J. Tolksdorf ◽  
D. Lu ◽  
P. Cornel

The SEMIZENTRAL approach has been developed for fast growing cities, to meet their challenges regarding the supply of water and the treatment of biowaste and wastewater. Key elements of the SEMIZENTRAL integrated infrastructure approach are high resource efficiency due to urban water reuse and the usage of the energy potential of wastewater/sludge and waste, as well as its system size between central and decentral. In Qingdao (PR China), the SEMIZENTRAL Resource Recovery Center (RRC) has been implemented for the first time worldwide at full scale. The goal of high resource efficiency, which includes generating service water, has a significant influence on the process design of the RRC. Moreover, the influence of the site adaptation of the general SEMIZENTRAL approach to the actual location in Qingdao on emissions to the water body and on the energy balance has been investigated. Through comparisons with a conventional wastewater treatment plant, advantages and disadvantages are evaluated. Due to water reuse, energy can be saved, compared to alternative water resources. The discharged nutrient load decreases considerably. Nevertheless, the effort required for wastewater treatment increases.


Author(s):  
Farouk Aichouche ◽  
Boumediene Benyahia ◽  
Marc Heran ◽  
Jerome Harmand

Author(s):  
Anouk F. Duque ◽  
Riccardo Campo ◽  
Angeles Val del Rio ◽  
Catarina L. Amorim

Over the last few years, wastewater treatment plants (WWTPs) have been rebranded as water resource recovery facilities (WRRFs), which recognize the resource recovery potential that exists in wastewater streams. WRRFs contribute to a circular economy by not only producing clean water but by recovering valuable resources such as nutrients, energy, and other bio-based materials. To this aim, huge efforts in technological progress have been made to valorize sewage and sewage sludge, transforming them into valuable resources. This review summarizes some of the widely used and effective strategies applied at pilot- and full-scale settings in order to valorize the wastewater treatment process. An overview of the different technologies applied in the water and sludge line is presented, covering a broad range of resources, i.e., water, biomass, energy, nutrients, volatile fatty acids (VFA), polyhydroxyalkanoates (PHA), and exopolymeric substances (EPS). Moreover, guidelines and regulations around the world related to water reuse and resource valorization are reviewed.


Environments ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 36
Author(s):  
Ludwig Paul B. Cabling ◽  
Yumi Kobayashi ◽  
Evan G. R. Davies ◽  
Nicholas J. Ashbolt ◽  
Yang Liu

Municipal sewage contains significant embedded resources in the form of chemical and thermal energy. Recent developments in sustainable technology have pushed for the integration of resource recovery from household wastewater to achieve net zero energy consumption and carbon-neutral communities. Sewage heat recovery and fit-for-purpose water reuse are options to optimize the resource recovery potential of municipal wastewater. This study presents a comparative life cycle assessment (LCA) focused on global warming potential (GWP), eutrophication potential (EUP), and human health carcinogenic potential (HHCP) of an integrated sewage heat recovery and water reuse system for a hypothetical community of 30,000 people. Conventional space and water heating components generally demonstrated the highest GWP contribution between the different system components evaluated. Sewage-heat-recovery-based district heating offered better environmental performance overall. Lower impact contributions were demonstrated by scenarios with a membrane bioreactor (MBR) and chlorination prior to water reuse applications compared to scenarios that use more traditional water and wastewater treatment technologies and discharge. The LCA findings show that integrating MBR wastewater treatment and water reuse into a district heating schema could provide additional environmental savings at a community scale.


Sign in / Sign up

Export Citation Format

Share Document