Trans-European Railway High-Speed Master Plan - Phase 1

2018 ◽  
Author(s):  
Keyword(s):  
Phase 1 ◽  
Author(s):  
Xuhui Wang ◽  
Quan Zhang ◽  
Yanyi Chen ◽  
Shihao Liang

In recent years, 3D technology based on computer and internet has achieved high-speed development. People have realized direct and stereo observation of realistic world. Three-dimensional and visualized characteristics of the technology fit well with the teaching objective of college architecture specialized courses. Thus, 3D model has profound practical significance for its application in urban green space system and urban rural overall planning. With “urban-rural master plan” as experimental course, through design of “urban-rural master plan” multimedia teaching platform based on 3D technology and practice of the teaching platform in course teaching, this article has applied control experiment method and statistical method to make comparative analysis on the teaching effect difference of multimedia teaching platform based on 3D technology application in “urban-rural master plan” as experimental course so as to provide theoretical and data support for 3D technology application in “urban-rural master plan” and other college architecture major courses.


2020 ◽  
pp. 80-84
Author(s):  
Pongkwan Lassus

The Makkasan Train Factory, opened 110 years ago, is the first industrial estate in Thailand and used to be the biggest hub for train production in Southeast Asia. Nowadays, this huge land of 80 hectares, with direct access from the Savarnabhumi airport rail link, is considered a golden land right in the business center of Bangkok, that attracts real estate investors. A third of the land set aside at the end of last year for the development of a mixed use commercial project as a part of the High Speed Train project. As this land is the last big area of public land in the capital, civic groups for urban heritage conservation and the environment tried to point out its tangible and intangible heritage value hoping that there would be a proper master plan to preserve these values for future generations.


Bauingenieur ◽  
2019 ◽  
Vol 94 (07-08) ◽  
pp. 255-265
Author(s):  
Thomas Herfs

Zusammenfassung Das britische Verkehrsministerium plant den Bau einer weiteren Hochgeschwindigkeitsstrecke mit einer Gesamtlänge von 230 km und einer möglichen Höchstgeschwindigkeit von 360 km/h. Die Phase 1 des High Speed Two (HS2) Projekts verbindet die Städte London und Birmingham und soll im Jahr 2026 betriebsbereit sein. Für die Vertragsvergabe der Hauptbauwerke ‚Main Works Civils‘ wurde die Trasse in sieben Lose eingeteilt und nach einem mehrjährigen Planfeststellungsverfahren im Jahr 2017 öffentlich ausgeschrieben. Das Design-Build-Vorhaben sieht für die Planungsphase (Stage 1) ein sogenanntes Early Contractor Involvement (ECI) vor, in dessen Rahmen Bauherr, bauausführende Firmen und Planer gemeinschaftlich einen Bauentwurf (Scheme Design) entwickeln und die Ausführung planen. HS2 beauftragte für die zwei südlichen Lose S1 und S2 mit einer Gesamtlänge von 25,8 km die Arbeitsgemeinschaft Skanska, Costain und Strabag (SCS JV). Beide Lose befinden sich im Ballungsraum von London und umfassen unter anderem den Bau von Tunneln mittels Schildvortrieb, in Spritzbeton- und Deckelbauweise sowie den Bau von Ventilationsschächten, Brücken und Kavernen. Am südlichen Ende der Eisenbahntrasse befindet sich das Vorfeld ‚Euston Approaches‘ des Londoner Bahnhofs Euston Station. Innerhalb dieses ersten Kilometers der Strecke plant HS2, eine Reihe von Ingenieurbauwerken direkt neben und unterhalb der historischen Eisenbahninfrastruktur bei laufendem Bahnbetrieb zu errichten. Dieser Artikel beschreibt die örtlichen Randbedingungen des komplexen Bauvorhabens und die daraus entstehenden Herausforderungen an den Entwurf und die Planung der oberflächennahen Kaverne, welche im Vorfeld als außergewöhnlich hohes Projektrisiko identifiziert wurde. Die Entwicklung des Scheme Designs wurde daher begleitet von Design Reviews, Design Checks und einer Technical Assurance. Das Projekt befindet sich zurzeit am Ende der Planungsphase.


1977 ◽  
Author(s):  
Neil V. Campbell ◽  
Richard H. Davis ◽  
Robert E. Duvall ◽  
Ronald P. Richter ◽  
Troy E. Todd
Keyword(s):  
Phase I ◽  

Author(s):  
D. Bradley ◽  
G. A. Chamberlain ◽  
D. D. Drysdale

This paper first briefly surveys the energy releases in some major accidents. It then examines the analyses of the explosion at the Buncefield fuel storage site in the UK, one of the most intense accidental explosions in recent times. This followed the release of approximately 300 tonnes of winter-grade gasoline, when a 15 m high storage tank was overfilled for about 40 min before ignition of the resulting flammable mixture. The ensuing explosion was of a severity that had not been identified previously in a major hazard assessment of this type of facility. It was therefore imperative to investigate the event thoroughly and develop an understanding of the underlying mechanisms to inform future prevention, mitigation and land-use planning issues. The investigation of the incident was overseen by the Buncefield Major Incident Investigation Board. A separate Explosion Mechanism Advisory Group examined the evidence and reported on the severity of the explosion. It concluded that additional work was necessary and recommended that a two-stage project be initiated, phase 1 of which has been completed. The analyses of the damage and the derivation of explosion over-pressures are described. Possible explosion mechanisms and the evidence for them at Buncefield are discussed, in the light of other major incidents. Mechanisms that are reviewed include high-speed turbulent combustion, quasi-detonations, fully developed detonations, the generation of fireballs, flame instabilites, radiative heat transfer and aspects of two-phase burning. Of particular importance is the acceleration of turbulent flames along the line of trees and hedgerows. A number of conclusions are drawn and suggestions made for further research.


Sign in / Sign up

Export Citation Format

Share Document