scholarly journals MATHEMATICAL MODELING OF THE TERMINATION FLIGHT CONTROL ALGORITHM FOR UNMANNED AERIAL VEHICLE

2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Ya. Kondrashov ◽  
A. Arutyunyan ◽  
I. Kravchyshyn
2021 ◽  
Vol 09 (03) ◽  
pp. 227-236
Author(s):  
Mengzhen Huo ◽  
Haibin Duan ◽  
Xilun Ding

The heterogeneous pigeon flock showed higher leadership stability than the homogeneous flock. In this paper, a control model applied to manned aircraft and Unmanned Aerial Vehicle heterogeneous formation flight is designed. During the smoothing trajectory, the swarm employed the distributed communication network and event-triggered interactive mechanism. During the turning trajectory, the centralized and distributed communication networks were integrated. Simulation tests demonstrated that the proposed control algorithm was feasible to form a cohesive group and effectively avoid obstacles in unknown environment.


The navigation systems as part of the navigation complex of a high-precision unmanned aerial vehicle in conditions of different altitude flight are investigated. The working contours of the navigation complex with correction algorithms for an unmanned aerial vehicle during high-altitude and low-altitude flights are formed. Mathematical models of inertial navigation system errors used in non-linear and linear Kalman filters are presented. The results of mathematical modeling demonstrate the effectiveness of the working contours effectiveness of the navigation complex with correction algorithms. Keywords high-precision unmanned aerial vehicle; navigation complex; multi-altitude flight; work circuit; passive noises; Kalman filter; correction


2021 ◽  
Vol 6 (2) ◽  
pp. 2044-2051
Author(s):  
Danial Sufiyan ◽  
Luke Soe Thura Win ◽  
Shane Kyi Hla Win ◽  
Gim Song Soh ◽  
Shaohui Foong

2011 ◽  
Vol 2011 (0) ◽  
pp. _1A2-O11_1-_1A2-O11_4
Author(s):  
Kenta Go ◽  
Atsushi KONNO ◽  
Takaaki MATSUMOTO ◽  
Atsushi OOSEDO ◽  
Kouji MASUKO ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xueqiang Shen ◽  
Jiwei Fan ◽  
Haiqing Wang

In order to control the position and attitude of unmanned aerial vehicle (UAV) better in different environments, this study proposed a hybrid control system with backstepping and PID method for eight-rotor UAV in different flight conditions and designed a switching method based on altitude and attitude angle of UAV. The switched process of hybrid controller while UAV taking off, landing, and disturbance under the gust is verified in MATLAB/Simulink. A set of appropriate controllers always matches to the flight of UAV in different circumstances, which can speed up the system response and reduce the steady-state error to improve stability. The simulation results show that the hybrid control system can suppress the drift efficiently under gusts, enhance the dynamic performance and stability of the system, and meet the position and attitude of flight control requirements.


Sign in / Sign up

Export Citation Format

Share Document