Manned Aircraft and Unmanned Aerial Vehicle Heterogeneous Formation Flight Control via Heterogeneous Pigeon Flock Consistency

2021 ◽  
Vol 09 (03) ◽  
pp. 227-236
Author(s):  
Mengzhen Huo ◽  
Haibin Duan ◽  
Xilun Ding

The heterogeneous pigeon flock showed higher leadership stability than the homogeneous flock. In this paper, a control model applied to manned aircraft and Unmanned Aerial Vehicle heterogeneous formation flight is designed. During the smoothing trajectory, the swarm employed the distributed communication network and event-triggered interactive mechanism. During the turning trajectory, the centralized and distributed communication networks were integrated. Simulation tests demonstrated that the proposed control algorithm was feasible to form a cohesive group and effectively avoid obstacles in unknown environment.

2021 ◽  
Vol 6 (2) ◽  
pp. 2044-2051
Author(s):  
Danial Sufiyan ◽  
Luke Soe Thura Win ◽  
Shane Kyi Hla Win ◽  
Gim Song Soh ◽  
Shaohui Foong

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4540
Author(s):  
Leszek Ambroziak ◽  
Maciej Ciężkowski

The following paper presents a method for the use of a virtual electric dipole potential field to control a leader-follower formation of autonomous Unmanned Aerial Vehicles (UAVs). The proposed control algorithm uses a virtual electric dipole potential field to determine the desired heading for a UAV follower. This method’s greatest advantage is the ability to rapidly change the potential field function depending on the position of the independent leader. Another advantage is that it ensures formation flight safety regardless of the positions of the initial leader or follower. Moreover, it is also possible to generate additional potential fields which guarantee obstacle and vehicle collision avoidance. The considered control system can easily be adapted to vehicles with different dynamics without the need to retune heading control channel gains and parameters. The paper closely describes and presents in detail the synthesis of the control algorithm based on vector fields obtained using scalar virtual electric dipole potential fields. The proposed control system was tested and its operation was verified through simulations. Generated potential fields as well as leader-follower flight parameters have been presented and thoroughly discussed within the paper. The obtained research results validate the effectiveness of this formation flight control method as well as prove that the described algorithm improves flight formation organization and helps ensure collision-free conditions.


2011 ◽  
Vol 2011 (0) ◽  
pp. _1A2-O11_1-_1A2-O11_4
Author(s):  
Kenta Go ◽  
Atsushi KONNO ◽  
Takaaki MATSUMOTO ◽  
Atsushi OOSEDO ◽  
Kouji MASUKO ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xueqiang Shen ◽  
Jiwei Fan ◽  
Haiqing Wang

In order to control the position and attitude of unmanned aerial vehicle (UAV) better in different environments, this study proposed a hybrid control system with backstepping and PID method for eight-rotor UAV in different flight conditions and designed a switching method based on altitude and attitude angle of UAV. The switched process of hybrid controller while UAV taking off, landing, and disturbance under the gust is verified in MATLAB/Simulink. A set of appropriate controllers always matches to the flight of UAV in different circumstances, which can speed up the system response and reduce the steady-state error to improve stability. The simulation results show that the hybrid control system can suppress the drift efficiently under gusts, enhance the dynamic performance and stability of the system, and meet the position and attitude of flight control requirements.


Sign in / Sign up

Export Citation Format

Share Document