scholarly journals PIV measurement of turbulence over a streamwise preferential porous medium

Author(s):  
Mahiro Morimoto ◽  
Yuki Okazaki ◽  
Yusuke Kuwata ◽  
Kazuhiko Suga

This study examines the possibility of orthotropic porous medium whose streamwise permeability is larger than the wall-normal permeability to reduce turbulent friction inspired by recent numerical studies of Rosti et al. (2018); G´omez-de Segura and Garc´ıa-Mayoral (2019). Because G´omez-de Segura and Garc´ıa-Mayoral (2019) used Brinkman equation to approximate the flow in the porous media, it is uncertain that such porous media really reduce the friction. We make a layered porous medium, which satisfies the drag reducing condition suggested by G´omez-de Segura and Garc´ıa-Mayoral (2019), and carry out particle image velocimetry measurements of turbulent square duct flows over it and examine the drag reduction probability. From the analyses of the obtained data, it is found that the friction on the porous-wall is nearly the same as that of the smooth-wall at Reb < 10000 and tends to increase at Reb > 10000.

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Puxuan Li ◽  
Steve J. Eckels ◽  
Garrett W. Mann ◽  
Ning Zhang

The setup of inlet conditions for a large eddy simulation (LES) is a complex and important problem. Normally, there are two methods to generate the inlet conditions for LES, i.e., synthesized turbulence methods and precursor simulation methods. This study presents a new method for determining inlet boundary conditions of LES using particle image velocimetry (PIV). LES shows sensitivity to inlet boundary conditions in the developing region, and this effect can even extend into the fully developed region of the flow. Two kinds of boundary conditions generated from PIV data, i.e., steady spatial distributed inlet (SSDI) and unsteady spatial distributed inlet (USDI), are studied. PIV provides valuable field measurement, but special care is needed to estimate turbulent kinetic energy and turbulent dissipation rate for SSDI. Correlation coefficients are used to analyze the autocorrelation of the PIV data. Different boundary conditions have different influences on LES, and their advantages and disadvantages for turbulence prediction and static pressure prediction are discussed in the paper. Two kinds of LES with different subgrid turbulence models are evaluated: namely dynamic Smagorinsky–Lilly model (Lilly model) and wall modeled large eddy simulation (WMLES model). The performances of these models for flow prediction in a square duct are presented. Furthermore, the LES results are compared with PIV measurement results and Reynolds-stress model (RSM) results at a downstream location for validation.


2019 ◽  
Vol 877 ◽  
pp. 196-213 ◽  
Author(s):  
Jurriaan J. J. Gillissen ◽  
Roland Bouffanais ◽  
Dick K. P. Yue

We present a variational data assimilation method in order to improve the accuracy of velocity fields $\tilde{\boldsymbol{v}}$, that are measured using particle image velocimetry (PIV). The method minimises the space–time integral of the difference between the reconstruction $\boldsymbol{u}$ and $\tilde{\boldsymbol{v}}$, under the constraint, that $\boldsymbol{u}$ satisfies conservation of mass and momentum. We apply the method to synthetic velocimetry data, in a two-dimensional turbulent flow, where realistic PIV noise is generated by computationally mimicking the PIV measurement process. The method performs optimally when the assimilation integration time is of the order of the flow correlation time. We interpret these results by comparing them to one-dimensional diffusion and advection problems, for which we derive analytical expressions for the reconstruction error.


Author(s):  
Masaki Yonekura ◽  
Kei Watanabe ◽  
Shunsuke Yamada ◽  
Hitoshi Ishikawa

Vortex structure behind a flexible rectangular plate with sway motion and flow-induced vibration was experimentally investigated by wind tunnel experiment by using Particle Image Velocimetry (PIV). The flexible rectangular plate, which was made of a polyurethane block, was cantilevered on a flat plate. On the opposite end, top free end showed a sway motion in the downstream direction. Increasing sway angle, the top free end involved the flow-induced in-line vibration which has a small amplitude. This is a typical example of fluid-structure interaction problem. However more experimental research for the effects of the sway motion and the flow-induced vibration on vortex structure behind the rectangular plate is required. In this paper, we focus attention on the phase-averaged vortex structure when the amplitude of vibration is the largest and smallest case. PIV measurement was conducted to clarify the phase-averaged and the instantaneous vortex structure behind the swaying plate. We discussed the effect of sway motion and flow-induced vibration on vortex structure.


2018 ◽  
Vol 837 ◽  
pp. 729-764 ◽  
Author(s):  
Yang Xu ◽  
Jin-Jun Wang ◽  
Li-Hao Feng ◽  
Guo-Sheng He ◽  
Zhong-Yi Wang

For the first time, an experiment has been conducted to investigate synthetic jet laminar vortex rings impinging onto porous walls with different geometries by time-resolved particle image velocimetry. The geometry of the porous wall is changed by varying the hole diameter on the wall (from 1.0 mm to 3.0 mm) when surface porosity is kept constant ($\unicode[STIX]{x1D719}=75\,\%$). The finite-time Lyapunov exponent and phase-averaged vorticity field derived from particle image velocimetry data are presented to reveal the evolution of the vortical structures. A mechanism associated with vorticity cancellation is proposed to explain the formation of downstream transmitted vortex rings; and both the vortex ring trajectory and the time-mean flow feature are compared between different cases. It is found that the hole diameter significantly influences the evolution of the flow structures on both the upstream and downstream sides of the porous wall. In particular, for a porous wall with a small hole diameter ($d_{h}^{\ast }=0.067$, 0.10 and 0.133), the transmitted finger-type jets will reorganize into a well-formed transmitted vortex ring in the downstream flow. However, for the case of a large hole diameter of $d_{h}^{\ast }=0.20$, the transmitted vortex ring is not well formed because of insufficient vorticity cancellation. Additionally, the residual vorticity gradually evolves into discrete jet-like structures downstream, which further weaken the intensity of the transmitted vortex ring. Consequently, the transmitted flow structures for the $d_{h}^{\ast }=0.20$ case would lose coherence more easily (or probably even transition to turbulence), resulting in a faster decay of the axial velocity and stronger entrainment of the transmitted jet. For all porous wall cases, the velocity profile of the transmitted jet exhibits self-similar behaviour in the far field ($z/D_{0}\geqslant 6.03$), which agrees well with the velocity distribution of free synthetic jets. With the help of the control-volume approach, the time-mean drag of the porous wall is evaluated experimentally for the first time. It is shown that the porous wall drag increases with the decrease in the hole diameter. Moreover, for a porous wall with a small hole diameter ($d_{h}^{\ast }=0.067$, 0.10 and 0.133), it appears that the porous wall drag mainly derives from the viscous effect. However, as $d_{h}^{\ast }$ increases to 0.20, the form drag associated with the porous wall geometry becomes significant.


Author(s):  
Steven P. O’Halloran ◽  
B. Terry Beck ◽  
Mohammad H. Hosni ◽  
Steven J. Eckels

Particle image velocimetry (PIV) is a well established measurement technique to measure velocity in a variety of different fluids. Using PIV to measure single-phase flow is well established, but recently PIV has been used to measure two-phase flows as well. Most two-phase PIV measurements have been for dispersed or bubbly flows, often utilizing the bubbles or droplets as PIV seed particles. However, there are other types of two-phase flow situations, such as stratified or slug flow, in which PIV measurement techniques are not yet well established. Situations such as these require both liquid and gas phases to be seeded separately with particles that can distinguish each phase. A particle injection method is presented for the air phase of a two-phase system using fluorescent tracer particles. Information about the system, including details of the fluorescent particles and injection device are given. The device injects micron sized fluorescent particles at a uniform rate into the flow of interest. A cut-off lens filter on the PIV camera is used to distinguish the fluorescent particles used for the air phase from non-fluorescent particles used in the liquid phase. Results using the technique with a two-phase air/water system in a thin rectangular channel for stratified/wavy flow are given. The channel is enclosed in a clear acrylic plastic tank and the dimensions of the channel are 600 mm long, 40 mm high, and 15 mm wide. The results demonstrate the ability to use PIV to measure the gas phase of a two-phase system for stratified/wavy flow and the method could be extended to other two-phase flow regimes as well.


Sign in / Sign up

Export Citation Format

Share Document