scholarly journals Artificial intelligence design based on fuzzy neural network logic for predicting emergency values of the armature current electric motor

2020 ◽  
Author(s):  
V.M. Buyankin
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Fan Chen ◽  
Gengsheng He ◽  
Shun Dong ◽  
Shunjun Zhao ◽  
Lin Shi ◽  
...  

The vibration produced by blasting excavation in urban underground engineering has a significant influence on the surrounding environment, and the strength of vibration intensity involves many influencing factors. In order to predict the space-time effects of blasting vibration more accurately, an automatic intelligent monitoring system is constructed based on the rough set fuzzy neural network blasting vibration characteristic parameter prediction model and the network blasting vibrator (TC-6850). By setting up the regional monitoring network of monitoring points, the obtained monitoring data are analyzed. An artificial intelligence model is used to predict the influence of stratum condition, excavation hole, and high-rise building on blasting vibration velocity and frequency propagation. The results show that the artificial intelligence prediction model based on a rough set fuzzy neural network can accurately reflect the formation attenuation effect, hollow effect, and building amplification effect of blasting vibration by effectively fuzzing and standardizing the influencing factors. The propagation of blasting vibration in a soil–rock composite stratum is closely related to the surrounding rock conditions with a noticeable elastic modulus effect. The hollow effect is regional, which has a significant influence on the surrounding ground and buildings. Besides, the blasting vibration of the excavated area is stronger than that of the unexcavated area. The propagation of blasting vibration on high-rise buildings was complicated, of which the peak vibration velocity is maximum at the lower level of the building and decreased with the rise of the floor gradually. The whip sheath effect appears at the top floor, which is related to the blasting vibration frequency and the building’s natural vibration frequency.


2020 ◽  
Vol 39 (2) ◽  
pp. 1711-1720
Author(s):  
He Chan ◽  
Yan Nai-He

A pretreatment method of industrial saline wastewater based on Artificial Intelligence based fuzzy neural network analysis was proposed to improve the pretreatment accuracy of industrial saline wastewater. This method uses a four-layer AI fuzzy neural network model and proposes a graded fuzzy neural network model for pretreatment method of industrial saline wastewater, it includes input layer, fuzzification layer, fuzzy logical layer and output layer, and designs the framework and calculation mode of the fuzzy function block and the neural network module. Finally, the dynamic simulation experiments of dissolved oxygen control in the fifth zone and nitrate nitrogen control in the second zone are carried out based on the simulation benchmark model (BSM1) platform. The experimental results show that this approach can effectively raise the adaptive control accuracy of the system compared with PID, feed forward neural network and conventional recurrent neural network.


2020 ◽  
pp. 1-11
Author(s):  
Li Ran

Government subsidies have an important impact on the development of high-interest technology companies and technological innovation. In order to study the relationship between government investment and the development of high-tech enterprises and technological innovation, based on artificial intelligence and fuzzy neural network, this paper builds an analysis model based on artificial intelligence and fuzzy neural network. According to the operation of each loop, this study designs a scheduling strategy that dynamically allocates network utilization according to the dynamic weight of the loop, and periodically changes the sampling period of the system, so that the system can not only run stably but also maximize the use of limited bandwidth. The network resource allocation module allocates the available network bandwidth of each control loop according to the dynamic weight of each loop, and the sampling period calculation module calculates a new sampling period based on the allocated network utilization rate. In addition, in this study, the performance of the model constructed in this paper is analyzed through empirical analysis. The results of the study show that the model constructed in this paper is effective.


2019 ◽  
Vol 1 (1) ◽  
pp. 466-482 ◽  
Author(s):  
Vinícius Silva Araújo ◽  
Augusto Guimarães ◽  
Paulo de Campos Souza ◽  
Thiago Silva Rezende ◽  
Vanessa Souza Araújo

Research on predictions of breast cancer grows in the scientific community, providing data on studies in patient surveys. Predictive models link areas of medicine and artificial intelligence to collect data and improve disease assessments that affect a large part of the population, such as breast cancer. In this work, we used a hybrid artificial intelligence model based on concepts of neural networks and fuzzy systems to assist in the identification of people with breast cancer through fuzzy rules. The hybrid model can manipulate the data collected in medical examinations and identify patterns between healthy people and people with breast cancer with an acceptable level of accuracy. These intelligent techniques allow the creation of expert systems based on logical rules of the IF/THEN type. To demonstrate the feasibility of applying fuzzy neural networks, binary pattern classification tests were performed where the dimensions of the problem are used for a model, and the answers identify whether or not the patient has cancer. In the tests, experiments were replicated with several characteristics collected in the examinations done by medical specialists. The results of the tests, compared to other models commonly used for this purpose in the literature, confirm that the hybrid model has a tremendous predictive capacity in the prediction of people with breast cancer maintaining acceptable levels of accuracy with good ability to act on false positives and false negatives, assisting the scientific milieu with its forecasts with the significant characteristic of interpretability of breast cancer. In addition to coherent predictions, the fuzzy neural network enables the construction of systems in high level programming languages to build support systems for physicians’ actions during the initial stages of treatment of the disease with the fuzzy rules found, allowing the construction of systems that replicate the knowledge of medical specialists, disseminating it to other professionals..


Author(s):  
Heng Xiao ◽  
Hongyu Sun ◽  
Bin Ran ◽  
Youngtae Oh

The framework of a traffic prediction model that could eliminate noise caused by random travel conditions is investigated. This model also can quantitatively calculate the influence of special factors. The framework combined several artificial intelligence technologies, such as wavelet transform, neural network, and fuzzy logic. The wavelet denoising method is emphasized and analyzed.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


Sign in / Sign up

Export Citation Format

Share Document