Biological Waste Water Rehabilitation of Sugar Factories by Algocoenosis Correction

2017 ◽  
Vol 21 (3) ◽  
pp. 16-20 ◽  
Author(s):  
V.V. Kul’nev ◽  
V.I. Stupin ◽  
A.A. Borzenkov

The article deals with theoretical and practical aspects of biological waste water rehabilitation of sugar factories by algocoenosis correction. This technology allows you to transfer domestic sewage treatment plant of filtration mode fields in the biological treatment ponds mode, significantly reducing the area of sewage treatment plants, thus improving the quality of treated waste water, which will, in turn, use them repeatedly reducing total water consumption.

2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


2019 ◽  
Vol 29 (3) ◽  
pp. 209-217
Author(s):  
Dariusz Królik ◽  
Przemysław Wypych ◽  
Jakub Kostecki

Abstract Sewage sludge produced in municipal sewage treatment plants, because of its physicochemical and sanitary properties, is a serious threat to the environment. In order to neutralize it, various methods of processing are used, which directly affect the quantity and quality of produced sewage sludge, which in the final stage can be used naturally. Properly managed sludge management is presented on the example of a sewage treatment plant, conducting the methane fermentation process with the production of biogas.


1995 ◽  
Vol 30 (4) ◽  
pp. 565-592 ◽  
Author(s):  
A.F. Gemza

Abstract Severn Sound continues to exhibit signs of eutrophication despite initial identification of the problem in 1969 and the construction of several sewage treatment plants since then. In general, improvements in trophic state indicators have been marginal, suggesting that the sewage treatment plants have had limited success in controlling phosphorus concentrations. These discharges likely contributed to the increased total phosphorus levels and consequently the higher phytoplankton densities of the nearshore waters. Phytoplankton biovolumes were on average one order of magnitude higher than in the open waters of Lake Huron with mean summer biovolumes as high as 8.0 mm/L. Algal biovolumes were most dense in Penetang Bay, which experienced limited exchange with the main waters of the sound. No significant long-term trends were observed. Water clarity was declining significantly, however, at a rate of -0.60 to -0.78 m/year throughout the sound except in Sturgeon Bay. Total phosphorus levels were highly variable from year to year; however, concentrations from a 20-year perspective were declining in the open waters at a rate of 0.70 µg/L/year, but response was limited in nearshore areas. In Sturgeon Bay, mean annual euphotic zone total phosphorus as well as soluble reactive phosphorus levels declined by as much as 50% following the construction of a sewage treatment plant with tertiary treatment. Phytoplankton genera typical of eutrophic waters continued to dominate the algal assemblage but members indicative of mesotrophic conditions have become apparent in some areas of the sound.


2014 ◽  
Vol 955-959 ◽  
pp. 3393-3399 ◽  
Author(s):  
Wei Zheng ◽  
Yan Ming Yang ◽  
Yun Long Li ◽  
Jian Qiu Zheng

The process technique and design parameters of project of Solar Ozonic Ecological Sewage Treatment Plant (short for SOESTP) which consists of anaerobic reactor, horizontal subsurface flow (HSSF) constructed wetlands(CWs) and the combination of solar power and ozone disinfection are described, the paper further examines the removal efficiency for treating rural domestic sewage, running expense and recycling ability of product water. The results show that the average percentage removal values of CODcr,BOD5,SS,TN,NH3-N,TP range from 95.6% to 98.0%, 96.0% to 98.7%, 93.1% to 96.1%, 97.0% to 98.9%, 96.9% to 99.5%, 98.2% to 99.6%, respectively, the reduction of fecal coliform (FC) reaches 99.9%, the effluent quality meets the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB18918-2002). The running cost of SOESTP is 0.063yuan/ m3, saves much more than traditional sewage treatment, and the ozone water obtained from the reservoir will be an ideal choice for disinfection .The system has characteristics of easy manipulation, low operating cost, achieving advanced water, energy conservation and environment protection, is thought to be very suitable for use as the promotion of rural small - scale sewage treatment.


2021 ◽  
Vol 766 (1) ◽  
pp. 012076
Author(s):  
Huang Jin ◽  
Zhang Xiaoxin ◽  
Sun Youfeng ◽  
Huang Xia ◽  
Wang Guanjun

1973 ◽  
Vol 2 (4) ◽  
pp. 473-482 ◽  
Author(s):  
J. C. Van Loon ◽  
J. Lichwa ◽  
D. Ruttan ◽  
J. Kinrade

2013 ◽  
Vol 671-674 ◽  
pp. 2736-2741
Author(s):  
Yin An Ming ◽  
Tao Tao

To reuse municipal sewage sludge safely, experiment was carried out on grapefruit trees fertilized with composted sludge from Shiweitou Sewage Treatment Plant in Xiamen City of China, and a method was introduced of how to assess the environmental quality of grapefruit trees soil fertilized with sludge by Set Pair Analysis (SPA) model. The results showed that the soil in the surface layer (0-15cm) and the deeper layer (15-30cm) was less clean, and the environment of soil was not polluted. Thus it was feasible to use sludge as fruit fertilizer. The maximum service life of sludge for continuous land application was estimated by taking Cd as the limiting factor, which would provide scientific guide and technical support for safe land application of sludge.


2021 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Natalia Taraszkiewicz

The development of sewage systems leads to an increase in people’s living standards and an improvement in the comfort of their daily lives. In 2021, the use of septic tanks is still a big issue; many of them are not properly sealed and can be harmful to the environment because of leakage. A good alternative for them is an individual sewage treatment plant. There are many types of such investment. This paper focuses on the selection between three types of sewage treatment plants (a biological wastewater treatment plant with activated sludge and a constructed wasteland) using MCDA–AHP and TOPSIS methods.


1983 ◽  
Vol 15 (9) ◽  
pp. 1205-1217 ◽  
Author(s):  
Y Kitabatake ◽  
T Miyazaki

A theoretical model of the sewage treatment plant location problem is presented, based on the assumptions of a homogeneous space and a homogeneous channel geometry of a river running parallel to a one-dimensional region. The analytical structure of the model is discussed. The model is then applied to the specific case of a suburban region of the Tokyo Metropolitan Region, where both the homogeneity assumptions are dropped. The numerical simulations show clearly how the heterogeneity in population distribution and river characteristics, as well as the trade-off ratio between water quality and least cost expenditure, affects the optimal plant locations.


Sign in / Sign up

Export Citation Format

Share Document