scholarly journals Neuropeptide FF (FLFQPQRF-NH2) and its Fragments Bind to α2δ Subunit of Voltage-Gated Calcium Channels

2019 ◽  
Vol 22 ◽  
pp. 292-300
Author(s):  
Hanna Skubatz

Purpose: Gabapentin, a drug for neuropathic pain, exerts its therapeutic effect via inhibition of the a2d subunit of N-type Ca2+ channels. Thus, finding peptides that specifically displace gabapentin from its binding site may lead to the development of new drugs. Methods: Displacement of bound [3H]-gabapentin in membrane preparations of rat cerebral cortex and of human Cav2.2/β3/α2δ1 expressed in CHO cell line. Results: Neuropeptide FLFQPQRF-NH2 specifically displaced bound [3H]-gabapentin in membrane preparations from rats and CHO cells. Truncation of the C-terminus of FLFQPQRF-NH2 by three amino acid residues to produce FLFQP-NH2 improved the displacement of gabapentin. FLFQP-NH2 displaced bound  [3H]-gabapentin with IC50 and Ki values of 2.7 µM and 1.7 µM, respectively. Deletion of two amino acid residues (FQ) in the middle of the FLFQP-NH2 sequence yielded FLP-NH2 that displaced bound [3H]-gabapentin with a lower affinity.  IC50 and Ki values were 11.9 µM and 7.8 µM, respectively. Neutral binding cooperativity existed when of FLFQP-NH2, FLP- NH2 and gabapentin when incubated together. FLFQPQRF-NH2 but not FLFQP-NH2 displaced bound [3H]-gabapentin to membrane preparations of human Cav2.2/b3/a2d1 expressed in CHO cells. Conclusion: FLFQPQRF-NH2, FLFQP-NH2 and FLP-NH2 displace bound gabapentin in membrane preparations of rat cerebral cortex. Binding cooperativity was detected when GBP/FLFQP-NH2/FLP-NH2 were incubated together. These novel binding sites may provide new approaches to modulate L-type Ca2+ channels.


1988 ◽  
Vol 251 (3) ◽  
pp. 691-699 ◽  
Author(s):  
R W Olafson ◽  
W D McCubbin ◽  
C M Kay

Biochemical and physiological studies of Synechococcus cyanobacteria have indicated the presence of a low-Mr heavy-metal-binding protein with marked similarity to eukaryotic metallothioneins (MTs). We report here the characterization of a Synechococcus prokaryotic MT isolated by gel-permeation and reverse-phase chromatography. The large number of variants of this molecule found during chromatographic separation could not be attributed to the presence of major isoproteins as assessed by amino acid analysis and amino acid sequencing of isoforms. Two of the latter were shown to have identical primary structures that differed substantially from the well-described eukaryotic MTs. In addition to six long-chain aliphatic residues, two aromatic residues were found adjacent to one another near the centre of the molecule, making this the most hydrophobic MT to be described. Other unusual features included a pair of histidine residues located in repeating Gly-His-Thr-Gly sequences near the C-terminus and a complete lack of association of hydroxylated residues with cysteine residues, as is commonly found in eukaryotes. Similarly, aside from a single lysine residue, no basic amino acid residues were found adjacent to cysteine residues in the sequence. Most importantly, sequence alignment analyses with mammalian, invertebrate and fungal MT sequences showed no statistically significant homology aside from the presence of Cys-Xaa-Cys structures common to all MTs. On the other hand, like other MTs, the prokaryotic molecule appears to be free of alpha-helical structure but has a considerable amount of beta-structure, as predicted by both c.d. measurements and the Chou & Fasman empirical relations. Considered together, these data suggested that some similarity between the metal-thiolate clusters of the prokaryote and eukaryote MTs may exist.



Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 715
Author(s):  
Tamara Tomanić ◽  
Claire Martin ◽  
Holly Stefen ◽  
Esmeralda Parić ◽  
Peter Gunning ◽  
...  

Tropomyosins (Tpms) have been described as master regulators of actin, with Tpm3 products shown to be involved in early developmental processes, and the Tpm3 isoform Tpm3.1 controlling changes in the size of neuronal growth cones and neurite growth. Here, we used primary mouse hippocampal neurons of C57/Bl6 wild type and Bl6Tpm3flox transgenic mice to carry out morphometric analyses in response to the absence of Tpm3 products, as well as to investigate the effect of C-terminal truncation on the ability of Tpm3.1 to modulate neuronal morphogenesis. We found that the knock-out of Tpm3 leads to decreased neurite length and complexity, and that the deletion of two amino acid residues at the C-terminus of Tpm3.1 leads to more detrimental changes in neurite morphology than the deletion of six amino acid residues. We also found that Tpm3.1 that lacks the 6 C-terminal amino acid residues does not associate with stress fibres, does not segregate to the tips of neurites, and does not impact the amount of the filamentous actin pool at the axonal growth cones, as opposed to Tpm3.1, which lacks the two C-terminal amino acid residues. Our study provides further insight into the role of both Tpm3 products and the C-terminus of Tpm3.1, and it forms the basis for future studies that aim to identify the molecular mechanisms underlying Tpm3.1 targeting to different subcellular compartments.





1989 ◽  
Vol 9 (1) ◽  
pp. 83-91
Author(s):  
S Miyazawa ◽  
T Osumi ◽  
T Hashimoto ◽  
K Ohno ◽  
S Miura ◽  
...  

To identify the topogenic signal of peroxisomal acyl-coenzyme A oxidase (AOX) of rat liver, we carried out in vitro import experiments with mutant polypeptides of the enzyme. Full-length AOX and polypeptides that were truncated at the N-terminal region were efficiently imported into peroxisomes, as determined by resistance to externally added proteinase K. Polypeptides carrying internal deletions in the C-terminal region exhibited much lower import activities. Polypeptides that were truncated or mutated at the extreme C terminus were totally import negative. When the five amino acid residues at the extreme C terminus were attached to some of the import-negative polypeptides, the import activities were rescued. Moreover, the C-terminal 199 and 70 amino acid residues of AOX directed fusion proteins with two bacterial enzymes to peroxisomes. These results are interpreted to mean that the peroxisome targeting signal of AOX residues at the C terminus and the five or fewer residues at the extreme terminus have an obligatory function in targeting. The C-terminal internal region also has an important role for efficient import, possibly through a conformational effect.



2010 ◽  
Vol 432 (3) ◽  
pp. 557-566 ◽  
Author(s):  
Emily R. Slepkov ◽  
Alan Pavinski Bitar ◽  
Hélène Marquis

The intracellular bacterial pathogen Listeria monocytogenes secretes a broad-range phospholipase C enzyme called PC-PLC (phosphatidylcholine phospholipase C) whose compartmentalization and enzymatic activity is regulated by a 24-amino-acid propeptide (Cys28–Ser51). During intracytosolic multiplication, bacteria accumulate the proform of PC-PLC at their membrane–cell-wall interface, whereas during cell-to-cell spread vacuolar acidification leads to maturation and rapid translocation of PC-PLC across the cell wall in a manner that is dependent on Mpl, the metalloprotease of Listeria. In the present study, we generated a series of propeptide mutants to determine the minimal requirement to prevent PC-PLC enzymatic activity and to identify residues regulating compartmentalization and maturation. We found that a single residue at position P1 (Ser51) of the cleavage site is sufficient to prevent enzymatic activity, which is consistent with P1′ (Trp52) being located within the active-site pocket. We observed that mutants with deletions at the N-terminus, but not the C-terminus, of the propeptide are translocated across the cell wall more effectively than wild-type PC-PLC at a physiological pH, and that individual amino acid residues within the N-terminus influence Mpl-mediated maturation of PC-PLC at acidic pH. However, deletion of more than 75% of the propeptide was required to completely prevent Mpl-mediated maturation of PC-PLC. These results indicate that the N-terminus of the propeptide regulates PC-PLC compartmentalization and that specific residues within the N-terminus influence the ability of Mpl to mediate PC-PLC maturation, although a six-residue propeptide is sufficient for Mpl to mediate PC-PLC maturation.



2003 ◽  
Vol 12 (6) ◽  
pp. 1169-1176 ◽  
Author(s):  
Dmitri N. Ermolenko ◽  
John M. Richardson ◽  
George I. Makhatadze


2005 ◽  
Vol 17 (9) ◽  
pp. 1084-1097 ◽  
Author(s):  
W LIM ◽  
Y ZHU ◽  
C WANG ◽  
B TAN ◽  
J ARMSTRONG ◽  
...  




1998 ◽  
Vol 812 (1-2) ◽  
pp. 297-300 ◽  
Author(s):  
John W Phillis ◽  
Michael H O'Regan ◽  
Dekun Song


Sign in / Sign up

Export Citation Format

Share Document