Factors Affecting Efficacy of Pitfall Traps For Beetles (Coleoptera: Carabidae and Tenebrionidae)2

1990 ◽  
Vol 25 (2) ◽  
pp. 284-293 ◽  
Author(s):  
Wendell L. Morrill ◽  
Donald G. Lester ◽  
Alan E. Wrona

Numbers of trapped beetles in the field and a laboratory arena increased with pitfall trap size. Size and configuration of guides affected catch size. Beetles which moved rapidly were more likely to be captured. Non-captures resulted when beetles turned away from traps or pulled out of the trap cones. Plant debris in traps reduced catch size.

2003 ◽  
Vol 14 (1) ◽  
Author(s):  
Matti Koivula ◽  
Johan Kotze ◽  
Laura Hiisivuori ◽  
Hannu Rita

Apart from experimental design, the selection of pitfall trap size, collecting fluid and habitat type sampled may also influence the capture efficiency of the method. We combined three field studies from two very different geographic areas, in which the efficiency of pitfall traps, using carabid beetles (Coleoptera: Carabidae), is evaluated. First, we showed that ethylene-glycol is a more efficient collecting fluid compared to commercial anti-freeze, paraffin and salt water in collecting beetles in a forest patch in South Africa. Second, we showed that larger traps (90 mm mouth diameter) are more efficient in collecting carabids than small traps (65 mm) in a meadow in Finland. We also showed that for these large traps, commercial vinegar was a better collecting fluid than propylene-glycol, but that for small traps, propylene-glycol was superior to vinegar in collecting carabids. Finally, we showed that the trappability of Pterostichus oblongopunctatus and Carabus hortensis differed in enclosures placed into two different habitat types (a forest and a clear-cut in Finland), while trappability did not differ significantly for two other species (Calathus micropterus and Pterostichus niger) in these habitat types. However, for the two Pterostichus species studied, the catches in traps placed in the centre of the enclosures were slightly higher in the clear-cut, compared to the forest, and catches were higher in enclosures with rich field-layer vegetation, compared to enclosures with poor vegetation. The three studies re-emphasise the uncertainties of using pitfall traps in ecological studies. However, with careful planning and standardisation to help avoid erroneous interpretations, pitfall trapping is an invaluable method for the field ecologist.


2018 ◽  
Vol 150 (6) ◽  
pp. 813-820
Author(s):  
H.E. James Hammond ◽  
David W. Langor ◽  
Dustin J. Hartley

AbstractThe depth at which pitfall traps were sunk into the ground and the resulting catches of epigaeic Carabidae (Coleoptera) and Staphylinidae (Coleoptera) assemblages in subhygric to hydric ecosites with very deep organic soil layers was investigated in the upper foothills ecoregion of Alberta, Canada. Traps were installed at seven sites, with six surface traps (the pitfall trap lip <5 cm below soil surface) and six deep traps (the pitfall trap lip >20 cm below soil surface) at each site. A total of 5289 beetles representing 75 taxa were collected. There were no significant effects of trap depth on catch. Rarefaction estimates of species diversity were higher in surface pitfall traps for both taxa. The similarity of pooled catches between deep and surface traps was on average 75%, suggesting that both trap types were collecting similar faunas. We found no advantage to using deep pitfall traps in addition to surface traps to sample the epigaeic fauna of wet forest stands and peatlands.


Author(s):  
Diego Santana Assis ◽  
Giovanni Abrami Rodrigues Camargo ◽  
Fabio Santos do Nascimento

Pheidole oxyops Forel, 1908 is a generalist ant, which forages actively for plant debris to dead arthropods. In addition, its nest has an entrance that allows the ants gather resources passively by capturing falling preys into the nest. Our objective was to verify if different day periods, temperature and residual soil accumulation (ground pile in the side of nest entrance) could influence the patterns of foraging activity. Foraging activities were registered in the morning, afternoon and twilight. We measured direction and vector of trails, air temperature and humidity during foraging events. Our results showed that foraging routes are independent of residual soil accumulation and other nearby nests. However, air temperature and the time daily period are significant factors to foragers&rsquo; exits. Higher air temperatures influenced negatively the exits. In the period of the afternoon, the ants do not show any preference for routes, different from the morning and twilight. In addition, foraging activities were significantly more frequent during twilight period. Leaving the nest at twilight could allow ants foraging in an environment with less exposition to potential predators and competitors. Moreover, it may be also related to opportunism to hunt other nocturnal insects.


2020 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Noor Farikhah Haneda ◽  
Nisfi Yuniar

Deforestasi atau perubahan fungsi dari hutan menjadi non-hutan berperan dalam perubahan ekosistem dan spesies di dalamnya. Serangga sebagai salah satu fauna di dalamnya merupakan aspek yang menarik untuk dikaji khususnya semut. Tujuan penelitian ini adalah mengidentifikasi peranan-peranan dari genus semut yang ditemukan di ekosistem transformasi. Penelitian dilaksanakan di Desa Bungku, Kecamatan Bajubang, Kabupaten Batanghari, Provinsi Jambi. Metode yang digunakan dalam penelitian ini adalah membuat plot pengamatan secara purposive sampling. Plot pengamatan dipasang di empat eksosistem hutan dengan jumlah masing - masing ekosistem sebanyak empat plot. Setiap plot memiliki lima sub plot yang tersebar di empat eksosistem hutan untuk pemasangan pitfall trap. Teknik pengambilan sampel semut menggunakan pitfall trap di empat ekosistem. Empat ekosistem tersebut yaitu hutan sekunder, perkebunan kelapa sawit, kebun karet, dan hutan karet. Hasil penelitian ditemukan sebanyak 33 genus dari 6 subfamili. Selanjutnya dari 33 genus dikelompokkan berdasarkan peranannya. Berdasarkan peranannya terdapat 46% pencari makan , 36% predator, 3% semut tentara, 3% pemakan bangkai, dan 3% lainnya (semut pemanen/pemetik, omnivora, predator, dan pemakan bangkai). Camponotus sebagai genus dominan memiliki peranan pencari makan, dan Pheidole mempunyai peranan sebagai penghancur biji dan sebagian lainnya adalah omnivora. The Role of Ants in Lowland Tropical Rainforest TransformationAbstractDeforestation or changes functions from forest to non-forest play a role in changing ecosystems and the species within them. Insect as one of the fauna is an interesting aspect to study, especially ants. Aims of this study is to identify the roles of the genus of ants that found in the transformation ecosystem. This study was conducted in Bungku Village, Bajubang District, Batanghari Regency, Jambi. Method used in this study is to make a plot of observation by purposive sampling. Ant sampling techniques use pitfall traps in four ecosystems i.e.. secondary forest, oil palm plantation,rubber plantation, and jungle rubber. This study found 33 genera from 6 subfamilies. Furthermore, 33 genera are grouped based on their roles, i.e. (1) 46% foragers, (2) 36% for predators, (3) 3% for army ants, (4) 3% for scavengers, and (5) 3% for others (harvesting ants, omnivores, predators and scavengers too). Camponotus as the dominant genus has a role for foragers, and Pheidole has a role as a seed destroyer and the other part is omnivorous.


2020 ◽  
Author(s):  
Antoine Gardarin ◽  
Muriel Valantin-Morison

Abstract In arable agroecosystems, arthropod communities often have a reduced abundance and diversity, which represents a challenge for sampling techniques needed to detect small differences among these simplified communities. We evaluated the suitability of pitfall traps for comparing the effects of cropping systems on arthropod communities. In a field experiment, we compared the effects of two pitfall trap diameters, the type of preserving fluid and the sampling effort on three metrics (activity density, taxonomic richness, and community weighted mean [CWM] of body size) for carabids and spiders. Trap size affected the observed composition of communities, with large traps yielding a higher proportion of spiders, and a higher richness and CWM body size for both taxa. The type of preserving fluid had a weaker effect. Simulations with various sampling efforts showed that only very different communities could be distinguished with less than 10 traps per field or less than 30 field replicates. Fewer traps were required to find differences between cropping systems for body size than for other metrics. Carabid activity density and body size, and spider genus richness, were the variables better distinguishing between cropping systems with the smallest sampling effort. A high sampling effort was required for comparing activity density and richness across cropping systems. Selection of the most appropriate trap design, metrics, and crops are the main factors for optimizing the trade-off between sampling effort and the ability to detect arthropod community responses to habitat management.


2021 ◽  
Author(s):  
Michael D Weiser ◽  
Katie E. Marshall ◽  
Cameron D. Siler ◽  
Michael Kaspari

This protocol is the complete methods used to extract abundance, morphology and color data from samples of invertebrates. We developed this protocol specifically to measure invertebrate by-catch from pitfall traps collected by the National Ecological Observatory Network (NEON), but these methods could be extended to any invertebrate samples. These methods were used in the publications: Blair, J.,M.D. Weiser, M. Kaspari, M.J. Miller, C. Siler and K. Marshall. 2020. Robust and simplified machine learning identification of pitfall trap-collected ground beetles at the continental scale. Ecology and Evolution 10(23): 13143-13153. DOI:10.1002/ece3.6905. Weiser, M.D., K.E. Marshall, M.J. Miller, C.D. Siler, S.N. Smith & M. Kaspari. in review at Oikos (October 2021). Robust metagenomic evidence that local assemblage richness increases with latitude in ground-active invertebrates of North America.


2011 ◽  
Vol 28 (1) ◽  
pp. 80-91 ◽  
Author(s):  
Marco A Ribeiro-Júnior ◽  
Rogério V Rossi ◽  
Cleuton L Miranda ◽  
Teresa C. S Ávila-Pires

1999 ◽  
Vol 26 (3) ◽  
pp. 341 ◽  
Author(s):  
Trevor J. Hobbs ◽  
Craig D. James

Shade covers for pitfall traps can be used to reduce the amount of solar radiation penetrating to the bottom of pitfall buckets, thereby reducing the number of captured animals dying from heat-stress. We tested the effectiveness of a variety of shade covers for reducing temperatures in pitfalls and trap mortality of small vertebrates, and examined the effect of one cover design on trap success in arid landscapes. Shade covers made of insulation foil were found to reduce core pitfall temperatures by 20–22˚C compared with uncovered buckets, which reached temperatures greater than 66ºC. Other cover types tested (plastic lid or cardboard) were found to be less effective: core bucket temperatures still reached 48–53ºC. While foil covers do reduce temperatures and therefore the probability of heat-stress-related mortality, above-ground foil covers also influence trap success. Traps with above-ground foil covers caught 39–43% fewer small vertebrates and 7–42% fewer species than uncovered traps. Above-ground foil covers had the greatest influence on the sampled abundance of scincid lizards (reduced by 50–52%), reduced the sampled abundance of most other lizard families and mammals, but increased capture success for snakes. If shade covers are required to minimise heat stress and mortality in pitfall buckets we recommend foil covers placed inside the bottom pitfall buckets as they significantly reduce pitfall temperatures and are likely to have minimal influence on trap success. However, regular checking of traps is still one of the most reliable ways to reduce heat-stress- related and other deaths in pitfall traps.


Sign in / Sign up

Export Citation Format

Share Document