scholarly journals A Review of Considered Factors to Penetrate Renewable Energy Resources in Electrical Power System

KnE Energy ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 52
Author(s):  
Dhanis Woro Fittrin Selo Nur Giyatno

<p>As an increasing of load demand, scarcity of fossil fuel and penetration of greenhouse gasses (GHG) effect, utilization of renewable energy resources (RER) such as wind, solar, biomass and tidal are rising drastically. Distributed generation (DG) is a technology giving opportunity to integrate RER into power system network. These integrations are needed optimal long term planning. Those planning, hopefully, can increase reliability of electrical power system network while saving environment from GHG with minimum infestation, operation and maintenance cost. The aim of this paper is reviewing factors should be consider when preparing, operating and evaluating electrical power system with integration of RER. By this planning, it is expected that its integration is effective and efficient in a lifetime of project. Finally, this review can help government, researcher, engineer and private sector to make policies to preparing hybrid power system-DGs.  </p><p><strong>Keywords</strong>: <em>Penetration of renewable energy resources, electrical power system, long term planning, distributed generation, policies  </em></p>

Author(s):  
Gul Rukh ◽  
Amjdullah Khattak

Over the last two decades, Pakistan’s energy demand has grown exponentially with very diminutive measures taken by the government to fulfill the needs. The large power plant projects are cumbersome, take years to be completed and require plenty of time to get fully operational. The idea of distributed generation works well in this case. Renewable energy comes well into play when we talk about distributed generation but the dependability of renewable energy resources on back-up such as batteries makes them unappealing. The objective of this paper is to practically implement a backup for the renewable energy resources using a mechanical storage such as CAES (Compressed Air Energy System). The proposed model is a composite technology, which comprises of EES (Electrical Energy Storage) and electrical power supply system. Solar energy driven compressor is used to compress the air in a storage tank, which is used on demand to drive the generator coupled air turbine. The fact that the developed system is solar powered, no other fuel is used with air and it uses mechanical storage instead of conventional storage like batteries, which makes the developed prototype system efficient, economical and durable as compared to the existing CAES. This paper focuses on the thermodynamic investigation, design and finally implementing a prototype CAES for a small load as an un-interrupted power supply system.


Author(s):  
S. Sarip ◽  
C. G. Abdullah ◽  
N. Shafie ◽  
N. A. N. Mahadzir ◽  
F. Yakob ◽  
...  

Renewable energy resources are becoming inexorably in the field of generating electrical power due to the fast development of technology, given to its advantages over non-renewable energy resources. Though the source is available in enormous amount, energy produced from single renewable energy resources such as tidal current may fluctuate with the time and the hour of the day or month, depending on the tides. Thus, by having a hybrid power system consisting two or more renewable energy resources coming into play at the same time would be more reliable to support the targeted area. However, the availability of renewable energies depends on the climate change, therefore having a storage battery or backup power is often essential. In this case, the main purpose of this research is to develop an off-grid hybrid tidal current and solar power system along with backup power to support One Fathom Bank Lighthouse in Malaysia with the intention to reduce the dependency on diesel generators. Having the ability to evaluate economic and technical feasibility of power system, HOMER software is used to run simulation and analyze the best combination of components to form a hybrid power system for the lighthouse. The results are based on the best components and sizing in compliance with the load demand and diesel fuel consumption to provide a reliable and cost-effective system.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


Author(s):  
Carlos V C Weiss ◽  
Melisa Menendez ◽  
Bárbara Ondiviela ◽  
Raúl Guanche ◽  
Iñigo J Losada ◽  
...  

Abstract The development of the marine renewable energy and offshore aquaculture sectors is susceptible to being affected by climate change. Consequently, for the long-term planning of these activities, a holistic view on the effects of climate change on energy resources and environmental conditions is required. Based on present climate and future climate scenario, favourable conditions for wind and wave energy exploitation and for farming six marine fish species are assessed using a suitability index over all European regional seas. Regarding available energy potential, the estimated changes in climate do not have direct impacts on the geographic distribution of potential regions for the energy industry (both wind and wave based), that is they pose no threat to this industry. Long-term changes in environmental conditions could however require adaptation of the aquaculture sector and especially of its exploitation areas. Opportunities for aquaculture expansion of the assessed species are identified. Possibilities for co-location of these activities are observed in the different climate scenarios. The evaluation of potential zones for the exploitation of marine renewable energy resources and offshore aquaculture represents a stepping-stone, useful for improving decision-making and assisting in the management of marine economies both in the short-term and in the long-term development of these sectors.


2021 ◽  
Vol 280 ◽  
pp. 124298 ◽  
Author(s):  
Chun Sing Lai ◽  
Giorgio Locatelli ◽  
Andrew Pimm ◽  
Xiaomei Wu ◽  
Loi Lei Lai

2019 ◽  
Vol 9 (8) ◽  
pp. 1561 ◽  
Author(s):  
Naiyu Wang ◽  
Xiao Zhou ◽  
Xin Lu ◽  
Zhitao Guan ◽  
Longfei Wu ◽  
...  

With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.


Sign in / Sign up

Export Citation Format

Share Document