scholarly journals Forming of the Optical Beam with the Rotating Polarization Vector

KnE Energy ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 259
Author(s):  
V M Kotov ◽  
G N Shkerdin ◽  
S V Averin

.

Author(s):  
Wenwu Cao

Domain structures play a key role in determining the physical properties of ferroelectric materials. The formation of these ferroelectric domains and domain walls are determined by the intrinsic nonlinearity and the nonlocal coupling of the polarization. Analogous to soliton excitations, domain walls can have high mobility when the domain wall energy is high. The domain wall can be describes by a continuum theory owning to the long range nature of the dipole-dipole interactions in ferroelectrics. The simplest form for the Landau energy is the so called ϕ model which can be used to describe a second order phase transition from a cubic prototype,where Pi (i =1, 2, 3) are the components of polarization vector, α's are the linear and nonlinear dielectric constants. In order to take into account the nonlocal coupling, a gradient energy should be included, for cubic symmetry the gradient energy is given by,


2010 ◽  
Vol 130 (4) ◽  
pp. 107-112 ◽  
Author(s):  
Yoshiyuki Watanabe ◽  
Yutaka Abe ◽  
Shinnosuke Iwamatsu ◽  
Seiya Kobayashi ◽  
Yoshiyuki Takahashi ◽  
...  

2010 ◽  
Vol 32 (2) ◽  
pp. 107-120
Author(s):  
Pham Chi Vinh ◽  
Trinh Thi Thanh Hue ◽  
Dinh Van Quang ◽  
Nguyen Thi Khanh Linh ◽  
Nguyen Thi Nam

The method of first integrals (MFI) based on the equation of motion for the displacement vector, or  based on the one for the traction vector was introduced  recently in order to find explicit secular equations of Rayleigh waves whose characteristic equations (i.e the equations determining the attenuation factor) are fully quartic or are of higher order (then the classical approach is not applicable). In this paper it is shown that, not only to Rayleigh waves,  the MFI can be applicable also to other waves by running it on the equations for mixed vectors. In particular: (i) By applying the MFI  to the equations for the displacement-traction vector we get the explicit dispersion equations of Stoneley waves in twinned crystals (ii)  Running the MFI on the equations for the traction-electric induction vector and the traction-electrical potential vector provides the explicit dispersion equations of SH-waves in piezoelastic materials. The obtained dispersion equations are identical with the ones previously derived using the method of polarization vector, but the procedure of driving them is more simple.


Author(s):  
R. Rosenkranz ◽  
W. Werner

Abstract In many cases of failure localization, passive voltage contrast (PVC) localization method does not work, because it is not possible to charge up conducting structures which supposed to be dark in the SEM and FIB images. The reason for this is leakage currents. In this article, the authors show how they succeeded in overcoming these difficulties by the application of the active voltage contrast (AVC) method as it was described as biased voltage contrast by Campbell and Soden. They identified three main cases where the PVC didn't work but where they succeeded in failure localization with the AVC method. This is illustrated with the use of two case studies. Compared to the optical beam based methods the resolution is much better so a single failing contact of e.g. 70 nm technology can clearly be identified which cannot be done by TIVA or OBIRCH.


1991 ◽  
Vol 27 (15) ◽  
pp. 1393
Author(s):  
R. Benjamin ◽  
C.D. Zaglanikis ◽  
A.J. Seeds

2021 ◽  
Vol 27 (S1) ◽  
pp. 822-824
Author(s):  
Enzo Rotunno ◽  
Amir Tavabi ◽  
Paolo Rosi ◽  
Stefano Frabboni ◽  
Peter Tiemeijer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document