scholarly journals Effect of Implantation and Construction Dental Materials on Fibroblast Cell Culture

2017 ◽  
Vol 2 (1) ◽  
pp. 459
Author(s):  
V.N. Olesova ◽  
N.A. Uzunyan ◽  
M.R. Filonov ◽  
F.G. Shumakov ◽  
Y.A. Povstyanko

An experimental study of biocompatibility of the basic prosthetic materials in the cell culture of human fibroblasts was performed. It revealed a negative effect on the morphology of the cells of chromium-cobalt alloy, the material for overdentures based on polymethyl methacrylate, the light-curing composite.




Author(s):  
Ilmira R. Gilmutdinova ◽  
Elena Kostromina ◽  
Regina D. Yakupova ◽  
Petr S. Eremin

The development of new biomaterials whose characteristics are as close as possible to the properties of living human tissues is one of the most promising areas of regenerative medicine. This work aimed at creating a bioplastic material based on collagen, elastin and hyaluronic acid and studying its structure and properties to assess the prospects for further use in clinical practice. Bioplastic material was obtained by mixing collagen, hyaluronic acid and elastin in predetermined proportions with distilled water. We treated the material with photochemical crosslinking to stabilize biofilm in a liquid medium and form a nanostructured scaffold. A commercial human skin fibroblast cell culture was used to assess the biomaterial cytotoxicity and biocompatibility. The visualization and studies of the biomaterial structure were performed using light and scanning electron microscopy. It has been shown that the obtained biomaterial is characterized by high resilience; it has also a high porosity. The co-culturing of the bioplastic material and human fibroblasts did not reveal any of its cytotoxic effects on cells in culture. It was shown that the biomaterial samples could maintain physical properties in the culture medium for more than 10 days, while the destruction of the matrix was observed 3–4 weeks after the beginning of incubation. Thus, the created biomaterial can be used on damaged skin areas due to its physical properties and structure. The use of the developed biomaterial provides effective conditions for good cell proliferation, which allows us to consider it as a promising wound cover for use in clinical practice.



2020 ◽  
Vol 32 (10) ◽  
pp. 2310-2315
Author(s):  
Duygu Harmanci ◽  
Zihni Onur Uygun ◽  
Ayşe Koçak Sezgin ◽  
Cenk Demirdöver ◽  
Ferhan Girgin Sagin ◽  
...  


2018 ◽  
Vol 11 (6) ◽  
pp. 385-394 ◽  
Author(s):  
Thomaz Oliveira ◽  
Ilana Costa ◽  
Victor Marinho ◽  
Valécia Carvalho ◽  
Karla Uchôa ◽  
...  

Circumcision is one of the most performed surgical procedures worldwide, and it is estimated that one in three men worldwide is circumcised, which makes the preputial skin removed after surgery an abundant material for possible applications. In particular, it is possible efficiently to isolate the cells of the foreskin, with fibroblasts being the most abundant cells of the dermis and the most used in biomedical research. This work aimed to review the knowledge and obtain a broad view of the main applications of human foreskin fibroblast cell culture. A literature search was conducted, including clinical trials, preclinical basic research studies, reviews and experimental studies. Several medical and laboratory applications of human foreskin fibroblast cell culture have been described, especially when it comes to the use of human foreskin fibroblasts as feeder cells for the cultivation of human embryonic stem cells, in addition to co-culture with other cell types. The culture of foreskin fibroblasts has also been used to: obtain induced pluripotent stem cells; the diagnosis of Clostridium difficile; to test the toxicity and effect of substances on normal cells, especially the toxicity of possible antineoplastic drugs; in viral culture, mainly of the human cytomegalovirus, study of the pathogenesis of other microorganisms; varied studies of cellular physiology and cellular interactions. Fibroblasts are important for cell models for varied application cultures, demonstrating how the preputial material can be reused, making possible new applications. Level of evidence: Not applicable for this multicentre audit.





Sign in / Sign up

Export Citation Format

Share Document