scholarly journals JOINTS ACTIVITY AND ITS ROLE IN THE UPPER EXTREMITY IN BADMINTON STROKES: A BIOMECHANICAL PERSPECTIVE OF SPORTS EDUCATION

2020 ◽  
Vol 8 (4) ◽  
pp. 522-529
Author(s):  
Mottakin Ahmed ◽  
G. D. Ghai

Purpose of the Study: This study aims to describe the muscle activity and its role in the upper extremity in Badminton Strokes and also investigates the Kinematics differences of Badminton forehand overhead shot, i.e., precise, smash and drop in wrist joint, elbow joint, and shoulder Joint from a biomechanics perspective. Methodology: Total [n=10] numbers of male badminton players were randomly selected from the badminton match practice group of L.N.I.P.E. Gwalior, Madhya Pradesh, India. The match practice group consisted of (n=78) players who at least participated in Inter-University badminton competition, and their age ranges from 17-25 years of old. Go Pro HERO 7, 2D camera was used. A video camera was mounted on a tripod at a height of 1.05 meters from the ground. 2D data of wrist joint, elbow joint, and shoulder joint were put in Kinovea 0.8.27 software. One way ANOVA was used. Principal Findings: The results of the finding demonstrate that Brain vibrations, paradoxically, are critical to the stability of movement and high performance. There are significant muscle activity and kinematics differences among forehand clear, forehand smash and forehand drop-in shoulder joint angle, elbow joint angle, and wrist joint angle. Applications of this Study: The Study may use by the badminton Players as well as coaches for the successful execution of badminton Skill. This study will provide the mechanical area of movement of badminton Players. The same kind of study may use in other games. Novelty/Originality of this Study: The Study explores the mechanical advantages of badminton forehand overhead Skill. It will give the reader new ideas to think of a similar kind of study in different games.

1988 ◽  
Vol 4 (4) ◽  
pp. 326-341 ◽  
Author(s):  
Spiros G. Prassas

A biomechanical model of the press handstand was developed to evaluate and predict the shoulder joint torque requirements as well as the motion of a gymnast’s center of mass (CM) from an initial to a final (handstand) position. Five press handstands executed by gymnasts of differing abilities were filmed and analyzed. The results were compared to the predicted parameters of simulated presses. It was found that execution of the skill with fewer fluctuations in trunk and lower extremities angular velocity—a characteristic of skilled performance—required smoother and at times larger shoulder joint torques. Reduction of the hip joint angle by only 5 or 10° did not substantially reduce the shoulder joint torque requirements. Regarding CM motion, it was found that during performance the CM continuously elevated and remained close to a vertical line passing through the center of the wrist joint. All gymnasts, however, were found to be leaning slightly backward during the first part of the movement and slightly forward during the later phases. Modifications in wrist joint angle required to maintain each gymnast’s CM precisely above the center of the wrist joint were investigated.


2012 ◽  
Vol 220 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Carlijn A. Vernooij ◽  
Leonora J. Mouton ◽  
Raoul M. Bongers

The ability to create stone tools is considered an important step in the emergence of human cognition. To further our understanding of these evolutionary processes we focused on the initial learning processes with which this percussive skill may be acquired. We studied a hammering task in which participants had to create a ground force vector by hitting a target on a force plate with a hammerstone. The produced ground force vector was presented as an arrow on a computer screen and had to end in a displayed target. The target could vary in its angle of azimuth and inclination. Over 5 days, three of the five participants adapted a wrist joint angle and two of these three participants adapted a shoulder joint angle that affected only angle of inclination of the ground force vector. Length and angle of azimuth of the ground force vector were not affected. In learning to control a hammering task, the first parameter to be manipulated seems to be the angle of inclination by adjusting the wrist and shoulder joint angles. This suggests that in the initial stages of learning a hammering task only one parameter is adapted.


2012 ◽  
Vol 09 ◽  
pp. 174-177
Author(s):  
NURHIDAYAH OMAR

The aim of this study was to develop a mathematical model of the arms during kayaking. Gordon's method has been used to develop the model. This model comprises of six kinematic chains of the arms that represent the right shoulder joint, right elbow joint, right wrist joint, left wrist joint, left elbow joint and left shoulder joint. The joints comprise of right upper arm, right lower arm, right hand-paddle, left hand-paddle, left lower arm and left upper arms.


2019 ◽  
Vol 122 (1) ◽  
pp. 413-423 ◽  
Author(s):  
Davis A. Forman ◽  
Daniel Abdel-Malek ◽  
Christopher M. F. Bunce ◽  
Michael W. R. Holmes

Forearm rotation (supination/pronation) alters corticospinal excitability to the biceps brachii, but it is unclear whether corticospinal excitability is influenced by joint angle, muscle length, or both. Thus the purpose of this study was to separately examine elbow joint angle and muscle length on corticospinal excitability. Corticospinal excitability to the biceps and triceps brachii was measured using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation. Spinal excitability was measured using cervicomedullary motor evoked potentials (CMEPs) elicited via transmastoid electrical stimulation. Elbow angles were manipulated with a fixed biceps brachii muscle length (and vice versa) across five unique postures: 1) forearm neutral, elbow flexion 90°; 2) forearm supinated, elbow flexion 90°; 3) forearm pronated, elbow flexion 90°; 4) forearm supinated, elbow flexion 78°; and 5) forearm pronated, elbow flexion 113°. A musculoskeletal model determined biceps brachii muscle length for postures 1–3, and elbow joint angles ( postures 4–5) were selected to maintain biceps length across forearm orientations. MEPs and CMEPs were elicited at rest and during an isometric contraction of 10% of maximal biceps muscle activity. At rest, MEP amplitudes to the biceps were largest during supination, which was independent of elbow joint angle. CMEP amplitudes were not different when the elbow was fixed at 90° but were largest in pronation when muscle length was controlled. During an isometric contraction, there were no significant differences across forearm postures for either MEP or CMEP amplitudes. These results highlight that elbow joint angle and biceps brachii muscle length can each independently influence spinal excitability. NEW & NOTEWORTHY Changes in upper limb posture can influence the responsiveness of the central nervous system to artificial stimulations. We established a novel approach integrating neurophysiology techniques with biomechanical modeling. Through this approach, the effects of elbow joint angle and biceps brachii muscle length on corticospinal and spinal excitability were assessed. We demonstrate that spinal excitability is uniquely influenced by joint angle and muscle length, and this highlights the importance of accounting for muscle length in neurophysiological studies.


2014 ◽  
Vol 49 (3) ◽  
pp. 317-321 ◽  
Author(s):  
Yen-Po Huang ◽  
You-Li Chou ◽  
Feng-Chun Chen ◽  
Rong-Tyai Wang ◽  
Ming-Jer Huang ◽  
...  

Context: Bench-press exercises are among the most common form of training exercise for the upper extremity because they yield a notable improvement in both muscle strength and muscle endurance. The literature contains various investigations into the effects of different bench-press positions on the degree of muscle activation. However, the effects of fatigue on the muscular performance and kinetics of the elbow joint are not understood fully. Objective: To investigate the effects of fatigue on the kinetics and myodynamic performance of the elbow joint in bench-press training. Design: Controlled laboratory study. Setting: Motion research laboratory. Patients or Other Participants: A total of 18 physically healthy male students (age = 19.6 ± 0.8 years, height = 168.7 ± 5.5 cm, mass = 69.6 ± 8.6 kg) participated in the investigation. All participants were right-hand dominant, and none had a history of upper extremity injuries or disorders. Intervention(s): Participants performed bench-press training until fatigued. Main Outcome Measure(s): Maximal possible number of repetitions, cycle time, myodynamic decline rate, elbow-joint force, and elbow-joint moment. Results: We observed a difference in cycle time in the initial (2.1 ± 0.42 seconds) and fatigue (2.58 ± 0.46 seconds) stages of the bench-press exercise (P = .04). As the participants fatigued, we observed an increase in the medial-lateral force (P = .03) and internal-external moment (P ≤ .04) acting on the elbow joint. Moreover, a reduction in the elbow muscle strength was observed in the elbow extension-flexion (P ≤ .003) and forearm supination-pronation (P ≤ .001) conditions. Conclusions: The results suggest that performing bench-press exercises to the point of fatigue increases elbow-joint loading and may further increase the risk of injury. Therefore, when clinicians design bench-press exercise regimens for general athletic training, muscle strengthening, or physical rehabilitation, they should control carefully the maximal number of repetitions.


Sign in / Sign up

Export Citation Format

Share Document