Biomechanical Model of the Press Handstand in Gymnastics

1988 ◽  
Vol 4 (4) ◽  
pp. 326-341 ◽  
Author(s):  
Spiros G. Prassas

A biomechanical model of the press handstand was developed to evaluate and predict the shoulder joint torque requirements as well as the motion of a gymnast’s center of mass (CM) from an initial to a final (handstand) position. Five press handstands executed by gymnasts of differing abilities were filmed and analyzed. The results were compared to the predicted parameters of simulated presses. It was found that execution of the skill with fewer fluctuations in trunk and lower extremities angular velocity—a characteristic of skilled performance—required smoother and at times larger shoulder joint torques. Reduction of the hip joint angle by only 5 or 10° did not substantially reduce the shoulder joint torque requirements. Regarding CM motion, it was found that during performance the CM continuously elevated and remained close to a vertical line passing through the center of the wrist joint. All gymnasts, however, were found to be leaning slightly backward during the first part of the movement and slightly forward during the later phases. Modifications in wrist joint angle required to maintain each gymnast’s CM precisely above the center of the wrist joint were investigated.

2020 ◽  
Vol 8 (4) ◽  
pp. 522-529
Author(s):  
Mottakin Ahmed ◽  
G. D. Ghai

Purpose of the Study: This study aims to describe the muscle activity and its role in the upper extremity in Badminton Strokes and also investigates the Kinematics differences of Badminton forehand overhead shot, i.e., precise, smash and drop in wrist joint, elbow joint, and shoulder Joint from a biomechanics perspective. Methodology: Total [n=10] numbers of male badminton players were randomly selected from the badminton match practice group of L.N.I.P.E. Gwalior, Madhya Pradesh, India. The match practice group consisted of (n=78) players who at least participated in Inter-University badminton competition, and their age ranges from 17-25 years of old. Go Pro HERO 7, 2D camera was used. A video camera was mounted on a tripod at a height of 1.05 meters from the ground. 2D data of wrist joint, elbow joint, and shoulder joint were put in Kinovea 0.8.27 software. One way ANOVA was used. Principal Findings: The results of the finding demonstrate that Brain vibrations, paradoxically, are critical to the stability of movement and high performance. There are significant muscle activity and kinematics differences among forehand clear, forehand smash and forehand drop-in shoulder joint angle, elbow joint angle, and wrist joint angle. Applications of this Study: The Study may use by the badminton Players as well as coaches for the successful execution of badminton Skill. This study will provide the mechanical area of movement of badminton Players. The same kind of study may use in other games. Novelty/Originality of this Study: The Study explores the mechanical advantages of badminton forehand overhead Skill. It will give the reader new ideas to think of a similar kind of study in different games.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Yujiang Xiang ◽  
Shadman Tahmid ◽  
Paul Owens ◽  
James Yang

Abstract Box delivery is a complicated task and it is challenging to predict the box delivery motion associated with the box weight, delivering speed, and location. This paper presents a single task-based inverse dynamics optimization method for determining the planar symmetric optimal box delivery motion (multi-task jobs). The design variables are cubic B-spline control points of joint angle profiles. The objective function is dynamic effort, i.e., the time integral of the square of all normalized joint torques. The optimization problem includes various constraints. Joint angle profiles are validated through experimental results using root-mean-square-error (RMSE) and Pearson’s correlation coefficient. This research provides a practical guidance to prevent injury risks in joint torque space for workers who lift and deliver heavy objects in their daily jobs.


Author(s):  
Abbas Fattah ◽  
Sunil K. Agrawal ◽  
John Fitzgibbons

The joint torques in hip, knee and ankle are computed using inverse dynamic model during standing up for a paraplegic patient. The joint torque comprises the dynamical torque due to the inertia forces, and a passive torque due to the muscles and gravitational torque. It has been observed that the contribution to the joint torques by the gravitational torque is dominant. On the basis of this result, a gravity balanced assistive device is proposed for the elderly and impaired people such as spinal cord injury and paraplegic patients. This passive device uses a hybrid method to identify the center of mass of the system using auxiliary parallelograms first. Next appropriate springs are connected to the device to vanish the total potential energy of the system due to the gravity during standing up. A prototype with the underlying principles is currently being fabricated at the University of Delaware.


2012 ◽  
Vol 220 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Carlijn A. Vernooij ◽  
Leonora J. Mouton ◽  
Raoul M. Bongers

The ability to create stone tools is considered an important step in the emergence of human cognition. To further our understanding of these evolutionary processes we focused on the initial learning processes with which this percussive skill may be acquired. We studied a hammering task in which participants had to create a ground force vector by hitting a target on a force plate with a hammerstone. The produced ground force vector was presented as an arrow on a computer screen and had to end in a displayed target. The target could vary in its angle of azimuth and inclination. Over 5 days, three of the five participants adapted a wrist joint angle and two of these three participants adapted a shoulder joint angle that affected only angle of inclination of the ground force vector. Length and angle of azimuth of the ground force vector were not affected. In learning to control a hammering task, the first parameter to be manipulated seems to be the angle of inclination by adjusting the wrist and shoulder joint angles. This suggests that in the initial stages of learning a hammering task only one parameter is adapted.


Biomechanics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 102-117
Author(s):  
Nasser Rezzoug ◽  
Vincent Hernandez ◽  
Philippe Gorce

A force capacity evaluation for a given posture may provide better understanding of human motor abilities for applications in sport sciences, rehabilitation and ergonomics. From data on posture and maximum isometric joint torques, the upper-limb force feasible set of the hand was predicted by four models called force ellipsoid, scaled force ellipsoid, force polytope and scaled force polytope, which were compared with a measured force polytope. The volume, shape and force prediction errors were assessed. The scaled ellipsoid underestimated the maximal mean force, and the scaled polytope overestimated it. The scaled force ellipsoid underestimated the volume of the measured force distribution, whereas that of the scaled polytope was not significantly different from the measured distribution but exhibited larger variability. All the models characterized well the elongated shape of the measured force distribution. The angles between the main axes of the modelled ellipsoids and polytopes and that of the measured polytope were compared. The values ranged from 7.3° to 14.3°. Over the entire surface of the force ellipsoid, 39.7% of the points had prediction errors less than 50 N; 33.6% had errors between 50 and 100 N; and 26.8% had errors greater than 100N. For the force polytope, the percentages were 56.2%, 28.3% and 15.4%, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 601 ◽  
Author(s):  
Marco Germanotta ◽  
Ilaria Mileti ◽  
Ilaria Conforti ◽  
Zaccaria Del Prete ◽  
Irene Aprile ◽  
...  

The estimation of the body’s center of mass (CoM) trajectory is typically obtained using force platforms, or optoelectronic systems (OS), bounding the assessment inside a laboratory setting. The use of magneto-inertial measurement units (MIMUs) allows for more ecological evaluations, and previous studies proposed methods based on either a single sensor or a sensors’ network. In this study, we compared the accuracy of two methods based on MIMUs. Body CoM was estimated during six postural tasks performed by 15 healthy subjects, using data collected by a single sensor on the pelvis (Strapdown Integration Method, SDI), and seven sensors on the pelvis and lower limbs (Biomechanical Model, BM). The accuracy of the two methods was compared in terms of RMSE and estimation of posturographic parameters, using an OS as reference. The RMSE of the SDI was lower in tasks with little or no oscillations, while the BM outperformed in tasks with greater CoM displacement. Moreover, higher correlation coefficients were obtained between the posturographic parameters obtained with the BM and the OS. Our findings showed that the estimation of CoM displacement based on MIMU was reasonably accurate, and the use of the inertial sensors network methods should be preferred to estimate the kinematic parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Fumery ◽  
Nicolas A. Turpin ◽  
Laetitia Claverie ◽  
Vincent Fourcassié ◽  
Pierre Moretto

AbstractThe biomechanics of load carriage has been studied extensively with regards to single individuals, yet not so much with regards to collective transport. We investigated the biomechanics of walking in 10 paired individuals carrying a load that represented 20%, 30%, or 40% of the aggregated body-masses. We computed the energy recovery rate at the center of mass of the system consisting of the two individuals plus the carried load in order to test to what extent the pendulum-like behavior and the economy of the gait were affected. Joint torque was also computed to investigate the intra- and inter-subject strategies occurring in response to this. The ability of the subjects to move the whole system like a pendulum appeared rendered obvious through shortened step length and lowered vertical displacements at the center of mass of the system, while energy recovery rate and total mechanical energy remained constant. In parallel, an asymmetry of joint moment vertical amplitude and coupling among individuals in all pairs suggested the emergence of a leader/follower schema. Beyond the 30% threshold of increased load mass, the constraints at the joint level were balanced among individuals leading to a degraded pendulum-like behavior.


2017 ◽  
Vol 14 (5) ◽  
pp. 172988141773189 ◽  
Author(s):  
Taihui Zhang ◽  
Honglei An ◽  
Hongxu Ma

Hydraulic actuated quadruped robot similar to BigDog has two primary performance requirements, load capacity and walking speed, so that it is necessary to balance joint torque and joint velocity when designing the dimension of single leg and controlling its motion. On the one hand, because there are three joints per leg on sagittal plane, it is necessary to firstly optimize the distribution of torque and angular velocity of every joint on the basis of their different requirements. On the other hand, because the performance of hydraulic actuator is limited, it is significant to keep the joint torque and angular velocity in actuator physical limitations. Therefore, it is essential to balance the joint torque and angular velocity which have negative correlation under the condition of constant power of the hydraulic actuator. The main purpose of this article is to optimize the distribution of joint torques and velocity of a redundant single leg with joint physical limitations. Firstly, a modified optimization criterion combining joint torques with angular velocity that takes both support phase and flight phase into account is proposed, and then the modified optimization criterion is converted into a normal quadratic programming problem. A kind of recurrent neural network is used to solve the quadratic program problem. This method avoids tremendous matrix inversion and fits for time-varying system. The achieved optimized distribution of joint torques and velocity is useful for aiding mechanical design and the following motion control. Simulation results presented in this article confirm the efficiency of this optimization algorithm.


Sign in / Sign up

Export Citation Format

Share Document