Regression Model to Analyse Air Pollutants Over a Coastal Industrial Station Visakhapatnam ( India )

2020 ◽  
Vol 1 (2) ◽  
pp. 107-113
Author(s):  
N.V. Krishna Prasad ◽  
M.S.S.R.K.N. Sarma ◽  
P. Sasikala ◽  
Naga Raju M ◽  
N. Madhavi

Particulate matter concentration and its study has gained tremendous significance in view of increase in air pollution. Since air pollution has many adverse effects on mankind, measures may be taken by observing the trends in PM2.5 (particulate matter) and concentrations of pollutants like NO2, SO2, NO2, NO, NOx, CO, NH3 and RH(Relative Humidity)  as well as temperature. Even though continuous monitoring of air pollution in urban locations has been increasing in view of its huge impact on the sustainable development and ecological balance a regression model is essential always to analyse large sets of data. These regression models also play vital role in some cases where data was not observed due to unavoidable circumstances and during times when the measuring instruments do not work. In this context an attempt was made to develop a regression model exclusively for Visakhapatnam(India) a coastal, urban and industrial station and to analyse the trends in particulate matter concentration at this staion. A regression model was developed with PM2.5 as dependent variable and SO2, NOx, NO2, CO, NH3, temperature(Temp) and relative humidity(RH) as independent variables. The efficiency of the model was tested with known independent variables and PM2.5 was estimated. It is found that observed and estimated PM2.5 values are highly correlated.

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 580
Author(s):  
Eyal Fattal ◽  
Hadas David-Saroussi ◽  
Ziv Klausner ◽  
Omri Buchman

The accumulated particulate matter concentration at a given vertical column due to traffic sources in urban area has many important consequences. This task, however, imposes a major challenge, since the problem of realistic pollutant dispersion in an urban environment is a very demanding task, both theoretically and computationally. This is mainly due to the highly inhomogeneous three dimensional turbulent flow regime in the urban canopy roughness sublayer, which is far from “local equilibrium” between shear production and dissipation. We present here a mass-consistent urban Lagrangian stochastic model for pollutants dispersion, where the flow field is modeled using a hybrid approach by which we model the surface layer based on the typical turbulent scales, both of the canopy and in the surface layer inertial sub-layer. In particular it relies on representing the canopy aerodynamically as a porous medium by spatial averaging the equations of motion, with the assumption that the canopy is laterally uniform on a scale much larger than the buildings but smaller than the urban block/neighbourhood, i.e., at the sub-urban-block scale. Choosing the spatial representative averaging volume allows the averaged variables to reflect the characteristic vertical heterogeneity of the canopy but to smooth out smaller scale spatial fluctuations caused as air flows in between the buildings. This modeling approach serves as the base for a realistic and efficient methodology for the calculation of the accumulated concentration from multiple traffic sources for any vertical column in the urban area. The existence of multiple traffic sources impose further difficulty since the computational effort required is very demanding for practical uses. Therefore, footprint analysis screening was introduced to identify the relevant part of the urban area which contributes to the chosen column. All the traffic sources in this footprint area where merged into several areal sources, further used for the evaluation of the concentration profile. This methodology was implemented for four cases in the Tel Aviv metropolitan area based on several selected summer climatological scenarios. We present different typical behaviors, demonstrating combination of source structure, urban morphology, flow characteristics, and the resultant dispersion pattern in each case.


2021 ◽  
Vol 67 (7) ◽  
pp. 2140-2150
Author(s):  
V. Sreekanth ◽  
Meenakshi Kushwaha ◽  
Padmavati Kulkarni ◽  
Adithi R. Upadhya ◽  
B. Spandana ◽  
...  

2021 ◽  
Vol 152 ◽  
pp. 106486
Author(s):  
Éric Lavigne ◽  
Robert Talarico ◽  
Aaron van Donkelaar ◽  
Randall V. Martin ◽  
David M. Stieb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document