scholarly journals ASSESSING AND MAPPING IRRIGATION POTENTIAL IN THE ABBAY RIVER BASIN, ETHIOPIA

2021 ◽  
Vol 114 (6) ◽  
pp. 97-109
Author(s):  
A. Yimere ◽  
E. Assefa
2016 ◽  
Vol 20 (5) ◽  
pp. 1903-1910 ◽  
Author(s):  
Behzad Hessari ◽  
Adriana Bruggeman ◽  
Ali Mohammad Akhoond-Ali ◽  
Theib Oweis ◽  
Fariborz Abbasi

Abstract. Supplemental irrigation of rainfed winter crops improves and stabilises crop yield and water productivity. Although yield increases by supplemental irrigation are well established at the field level, its potential extent and impact on water resources at the basin level are less researched. This work presents a Geographic Information Systems (GIS)-based methodology for identifying areas that are potentially suitable for supplemental irrigation and a computer routine for allocating streamflow for supplemental irrigation in different sub-basins. A case study is presented for the 42 908 km2 upper Karkheh River basin (KRB) in Iran, which has 15 840 km2 of rainfed crop areas. Rainfed crop areas within 1 km from the streams, with slope classes 0–5, 0–8, 0–12, and 0–20 %, were assumed to be suitable for supplemental irrigation. Four streamflow conditions (normal, normal with environmental flow requirements, drought and drought with environmental flow) were considered for the allocation of water resources. Thirty-seven percent (5801 km2) of the rainfed croplands had slopes less than 5 %; 61 % (3559 km2) of this land was suitable for supplemental irrigation, but only 22 % (1278 km2) could be served with irrigation in both autumn (75 mm) and spring (100 mm), under normal flow conditions. If irrigation would be allocated to all suitable land with slopes up to 20 %, 2057 km2 could be irrigated. This would reduce the average annual outflow of the upper KRB by 9 %. If environmental flow requirements are considered, a maximum (0–20 % slopes) of 1444 km2 could receive supplemental irrigation. Under drought conditions a maximum of 1013 km2 could be irrigated, while the outflow would again be reduced by 9 %. Thus, the withdrawal of streamflow for supplemental irrigation has relatively little effect on the outflow of the upper KRB. However, if the main policy goal would be to improve rainfed areas throughout the upper KRB, options for storing surface water need to be developed.


2012 ◽  
Vol 9 (12) ◽  
pp. 13519-13536 ◽  
Author(s):  
B. Hessari ◽  
A. Bruggeman ◽  
A. Akhoond-Ali ◽  
T. Oweis ◽  
F. Abbasi

Abstract. Supplemental irrigation of rainfed winter crops improves and stabilizes crop yield and water productivity. Although yield increases by supplemental irrigation are well established at the field level, its potential extent and impact on water resources at the basin level are less researched. This work presents a GIS-based methodology for identifying areas that are potentially suitable for supplemental irrigation and a computer routine for allocating stream flow for supplemental irrigation in different subbasins. A case study is presented for the 42 908 km2 upper Karkheh River Basin (KRB) in Iran, which has 15 840 km2 of rainfed crop areas. Rainfed crop areas within 1 km from the streams, with slope classes 0–5%, 0–8%, 0–12% and 0–20%, were assumed to be suitable for supplemental irrigation. Four stream flow conditions (normal, normal with environmental flow requirements, drought and drought with environmental flow) were considered for the allocation of water resources. Thirty-seven percent (5801 km2) of the rainfed croplands had slopes less than 5%. Sixty-one percent (3559 km2) of this land was suitable for supplemental irrigation, but only 22% (1278 km2) could be served with irrigation in both fall (75 mm) and spring (100 mm), under normal flow conditions. If irrigation would be allocated to all suitable land with slopes up to 20%, 2057 km2 could be irrigated. This would reduce the average annual outflow of the upper KRB by 9%. If environmental flow requirements are considered, a maximum (0–20% slopes) of 1444 km2 could receive supplemental irrigation. Under drought conditions a maximum of 1013 km2 could be irrigated, while the outflow would again be reduced by 9%. Thus, the withdrawal of steam flow for supplemental irrigation has relatively little effect on the outflow of the upper KRB. However, if the main policy goal would be to improve rainfed areas throughout the upper KRB, options for storing surface water need to be developed.


Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 68
Author(s):  
Meseret Dawit ◽  
Bilisummaa Dirriba Olika ◽  
Fiseha Behulu Muluneh ◽  
Olkeba Tolessa Leta ◽  
Megarsa Olumana Dinka

Assessing available water resources and their potential for irrigation water use is vital for sustainable agricultural development and planning. This is particularly of interest in developing countries like Ethiopia, where a small portion of largely accessible land for surface irrigation applications has been utilized, despite the majority of the population relying on agricultural productivity. This study utilized the Dhidhessa River Basin (Ethiopia) as a case study and analyzed the main challenges to balance the sustainable water resources utilization and enhance agricultural productivity of the basin. The study mainly focused on estimating the available water resources and their potential for surface irrigation water use in the basin. This was achieved by utilizing Geographic Information System (GIS)-based tools, a hydrological Soil and Water Assessment Tool (SWAT) model, and a Crop Water and Irrigation Requirements Program of FAO (CROPWAT) model. While the SWAT estimated the water availability in the basin, GIS-tools such as Model Builder were used to map the irrigation potential of the basin. For irrigation water potential assessment, we selected six crops (cabbage, maize, tomato, pepper, groundnut and sugarcane) and estimated their irrigation water requirements using the CROPWAT model. We developed the SWAT model for the period from 1986 to 2012 using the available hydro-meteorological and geo-spatial data. Due to many parameters used in the model, we first performed a parameter sensitivity analysis and identified the most essential/sensitivity parameters via Sequential Uncertainty Fitting-II (SUFI-2). The identified sensitive parameters were subsequently used for model calibration (1989–2000) and validation (2001–2012) procedures achieved via SUFI-2. SWAT was able to reproduce the observed monthly streamflow values with a coefficient of determination (R2) and Nash-Sutcliffe Coefficient (NSE) of 0.85 and 0.87 for the calibration period and 0.91 and 0.89 for the validation period, respectively. The findings generally indicated a “good” performance of the model in simulating the hydrology. The annual available water of the basin is 9.26 billion cubic meters (BCM) whereas the 70% and 80% dependable flow is 7.56 and 6.97 BCM, respectively. Based on the Model Builder of ArcGIS, the SWAT estimated available water can potentially irrigate an area of 259,028 ha for slope less than 8%, 643,162 ha for slopes less than 15% and 1,023,581 ha for slopes less than 30%. Moreover, the irrigation water requirements were calculated by the CROPWAT model for the six selected crops indicated that although the need for irrigation water varies depending on the season, the potential irrigation area of the Dhidhessa River Basin is greater than its irrigated land. Therefore, it is concluded that the basin’s surface irrigation systems need to be expanded to enhance the agricultural productivity and improve the livelihood of the basin’s communities and similar basins elsewhere.


2019 ◽  
Vol 68 (4) ◽  
pp. 607-616
Author(s):  
Asfaw Birhanu ◽  
Santosh Murlidhar Pingale ◽  
Bankaru‐Swamy Soundharajan ◽  
Pratap Singh

Sign in / Sign up

Export Citation Format

Share Document