Wehrl Entropy, Entropy Squeezing and Nonlocal Correlation of Moving Atoms in Squeezed Coherent Field

2017 ◽  
Vol 11 (5) ◽  
pp. 1455-1461 ◽  
Author(s):  
M. Algarni ◽  
H. Al-Ghamd ◽  
S. Abdel-Khalek
2019 ◽  
Vol 33 (12) ◽  
pp. 1950118
Author(s):  
Yas Al-Hadeethi ◽  
Bahaaudin M. Raffah ◽  
Nawal Almalky ◽  
E. M. Khalil

In this paper, the interaction between two trap ions with laser beam and electromagnetic field containing the Stark shift terms has been investigated. The analytical solution for the differential equations which describes the system Hamiltonian is obtained. The dynamical behavior for the entanglement, entropy squeezing and purity of system are discussed. Some important physical characteristics such as revivals and collapses for the occupation of the trapped ion, entanglement sudden death (birth) and single trapped ion entropy squeezing are discussed. In addition, the influence of Lamb–Dicke parameter and the initial states on the evolution of the entanglement, linear entropy are studied. Finally, some remarks about the obtained results are given briefly.


2016 ◽  
Vol 13 (10) ◽  
pp. 7455-7459
Author(s):  
S. I Ali ◽  
A. M Mosallem ◽  
T Emam

In this paper, we investigate the entanglement of the interaction of three modes of radiation field with moving and unmoving two-level atom. The time evolution of the von Neumann entropy, entropy squeezing and marginal atomic Wehrl entropy is investigated. The marginal atomic Wehrl entropy as squeezing indicator of the entanglement of the system is suggested. The results beacon the important roles played by both the atomic motion parameters in the evolution of entanglement, entropy squeezing and marginal atomic Wehrl entropy. Using special values of the photon number of transition and atomic motion parameter, the entanglement phenomena of sudden death and long living entanglenment can be appeared. The results show that there is atomic motion monotonic harmonization atomic Wehrl entropy (WE). It is illustrated that the amount of the above-mentioned phenomena can be tuned by controlling the evolved parameters appropriately.


2013 ◽  
Vol 11 (03) ◽  
pp. 1350026 ◽  
Author(s):  
S. ABDEL-KHALEK ◽  
M. S. ALMALKI

The quantum nonlocal correlation between an atom and coherent field is described quantitatively in terms of multi-photon and phase damping processes. Especially, considering a two-level atom interacts with a single-mode quantized field in a coherent state inside a phase-damped cavity, and taking into account the number of multi-photon transitions and phase damping effect, the entanglement is investigated during the time evolution as a function of involved' parameters in the system. The results show that the enhancement of the transitions are very useful in generating a high amount of entanglement. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the bipartite system with its environment is evaluated and investigated during the dissipative process. Finally, the physical interpretation of the correlation behaviors between the subsystems is explained through the statistical properties of the field.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 147 ◽  
Author(s):  
Abdel-Baset Mohamed ◽  
Shoukry Hassan ◽  
Rania Alharbey

Wehrl entropy and its density are used to investigate the dynamics of loss of coherence and information in a phase space for an atomic model of two-photon two-level atom coupled to different radiation reservoirs (namely, normal vacuum (NV), thermal field (TF) and squeezed vacuum (SV) reservoirs). Particularly, quantum interference (QI) effect, due to the 2-photon transition decay channels, has a paramount role in: (i) the atomic inversion decay in the NV case, which behaves as quantum Zeno and anti-Zeno decay effect; (ii) the coherence and information loss in the phase space; and (iii) identifying temporal information entropy squeezing. Results are also sensitive to the initial atomic state.


Author(s):  
W. Coene ◽  
A. Thust ◽  
M. Op de Beeck ◽  
D. Van Dyck

Compared to conventional electron sources, the use of a highly coherent field-emission gun (FEG) in TEM improves the information resolution considerably. A direct interpretation of this extra information, however, is hampered since amplitude and phase of the electron wave are scrambled in a complicated way upon transfer from the specimen exit plane through the objective lens towards the image plane. In order to make the additional high-resolution information interpretable, a phase retrieval procedure is applied, which yields the aberration-corrected electron wave from a focal series of HRTEM images (Coene et al, 1992).Kirkland (1984) tackled non-linear image reconstruction using a recursive least-squares formalism in which the electron wave is modified stepwise towards the solution which optimally matches the contrast features in the experimental through-focus series. The original algorithm suffers from two major drawbacks : first, the result depends strongly on the quality of the initial guess of the first step, second, the processing time is impractically high.


Sign in / Sign up

Export Citation Format

Share Document