NIOBIUM SILICIDE SYNTHESIS BY SPARK PLASMA SINTERING OF COMPOSITE POWDERS

2018 ◽  
pp. 54-63
Author(s):  
I.Yu. Efimochkin ◽  
◽  
N.A. Kuzmina ◽  
D.V. Graschenkov ◽  
I.L. Svetlov ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Alexander M. Laptev ◽  
Jürgen Hennicke ◽  
Robert Ihl

Spark Plasma Sintering (SPS) is a technology used for fast consolidation of metallic, ceramic, and composite powders. The upscaling of this technology requires a reduction in energy consumption and homogenization of temperature in compacts. The application of Carbon Fiber-Reinforced Carbon (CFRC) insulating plates between the sintering setup and the electrodes is frequently considered as a measure to attain these goals. However, the efficiency of such a practice remains largely unexplored so far. In the present paper, the impact of CFRC plates on required power, total sintering energy, and temperature distribution was investigated by experiments and by Finite Element Modeling (FEM). The study was performed at a temperature of 1000 °C with a graphite dummy mimicking an SPS setup. A rather moderate influence of CFRC plates on power and energy demand was found. Furthermore, the cooling stage becomes considerably longer. However, the application of CFRC plates leads to a significant reduction in the axial temperature gradient. The comparative analysis of experimental and modeling results showed the good capability of the FEM method for prediction of temperature distribution and required electric current. However, a discrepancy between measured and calculated voltage and power was found. This issue must be further investigated, considering the influence of AC harmonics in the DC field.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1323 ◽  
Author(s):  
Yanlin Pan ◽  
Daoping Xiang ◽  
Ning Wang ◽  
Hui Li ◽  
Zhishuai Fan

Fine-grained W-6Ni-4Mn alloys were fabricated by spark plasma sintering (SPS) using mechanical milling W, Ni and Mn composite powders. The relative density of W-6Ni-4Mn alloy increases from 71.56% to 99.60% when it is sintered at a low temperature range of 1000–1200 °C for 3 min. The spark plasma sintering process of the alloy can be divided into three stages, which clarify the densification process of powder compacts. As the sintering temperature increases, the average W grain size increases but remains at less than 7 µm and the distribution of the binding phase is uniform. Transmission electron microscopy (TEM) observation reveals that the W-6Ni-4Mn alloy consists of the tungsten phase and the γ-(Ni, Mn, W) binding phase. As the sintering temperature increases, the Rockwell hardness and bending strength of alloys initially increases and then decreases. The optimum comprehensive hardness and bending strength of the alloy are obtained at 1150 °C. The main fracture mode of the alloys is W/W interface fracture.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3549 ◽  
Author(s):  
Sung Lee ◽  
Ki Park ◽  
Jang-Won Kang ◽  
Yanghoo Kim ◽  
Hyun-Su Kang ◽  
...  

In this study, the sintering behaviors of Nb-6Mo-20Si-3Cr (at percentage) in situ composite powders were studied. The Nb alloy powder was fabricated by a hydrogenation-dehydrogenation method, and both the alloy ingot and powders consisted of two phases: An Nb metal phase and the α-Nb5Si3 phase. Consolidation of the alloy powders was performed at 1500, 1600, and 1700 °C using spark plasma sintering, and the microstructures and phases formed at various sintering temperatures were analyzed. Micropores were observed in the compact sintered at 1500 °C due to the lack of complete densification at that temperature. The densification was completed at 1600 °C and the microstructure was slightly coarsened at 1700 °C compared to the microstructure of the compact sintered at 1600 °C. The microstructures prepared by the powder metallurgy method were finer than the microstructure of the ingot prepared by the casting method. The phase formation behavior varied according to the sintering temperature. Specifically, the α-Nb5Si3 phase, which is a stable structure of the Nb5Si3 phase at a low temperature, was transformed to the β-Nb5Si3 phase (which is stable at a high temperature) with an increasing sintering temperature.


2021 ◽  
Vol 21 (4) ◽  
pp. 2687-2691
Author(s):  
Nguyen Thi ◽  
Hoang Oanh ◽  
Nguyen Hoang Viet

The present work is focused on the fabrication and the investigation of microstructures of copperbased TiC nanocomposites produced by mechanical milling in a high energy planetary ball mill. TiH2, carbon and copper powders were used as starting materials in which In-Situ reaction between carbon and TiH2 occurs to form TiC nanoparticles. The mixture powders of Cu–TiH2–C were milled for 12 h at 450 rpm in Argon gas. Annealing treatment process at 950 °C for 2 h was applied for as-milled composite powders to enhance In-Situ reaction. The consolidation of composite powders was conducted by spark plasma sintering under uniaxial pressing of 70 MPa. Sintering procedure was done at 950 and 1000 °C for 5 min. The results indicated that as TiC nanoparticles are formed after sintering at 950 °C and the TiC particles are increased up at higher sintering temperature of 1000 °C. Fracture surface of sintered samples shows ductile mode. HR-TEM image showed the crystal size of copper was about 10 nm for sample sintered at 1000 °C. The hardness and relative density of the nanocomposites increase when increasing sintering temperature.


Sign in / Sign up

Export Citation Format

Share Document