scholarly journals Shallow velocity model from the transient electromagnetic method data: results of application in Eastern and Western Siberia

Georesursy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 60-72
Author(s):  
Ivan A. Shelokhov ◽  
Igor V. Buddo ◽  
Alexander S. Smirnov ◽  
Alexander A. Pyankov ◽  
Nikolay V. Tatyanin

The geological section of Eastern and Western Siberia is an extremely complex object for a seismic exploration. The reason for this is the extremely high variability of the upper part of the section lithology, rough terrain, and permafrost rocks. This paper delivers an alternative approach to predicting the velocity model of the upper part of the section. The approach based on the original method of restoring the elastic-velocity characteristics from the data of transient electromagnetic method (TEM) in the near field zone. Research devoted to test the methodology of the shallow section velocity model calculation based on TEM data in a number of fields in Eastern and Western Siberia. Derived results aimed to improve the accuracy of the geological model building and the reliability of the hydrocarbon plays prediction. Synthetic modeling and field data confirm the high level of the proposed methodology effectiveness. It was shown that for the Eastern Siberia settings, an improvement in the quality of processing of seismic data consists in a significant increase in the dynamics and coherence of seismic recordings. In Western Siberia, it is possible to take into account the velocity anomalies associated with the permafrost rocks and zones of transit from the onshore part of the survey area to the sea. The main features of the study are useful in oil & gas companies and scientific institutions dealing with seismic data processing and interpretation to optimize expenses and improve blocks geology understanding.

2017 ◽  
Vol 64 (8) ◽  
pp. 6475-6483 ◽  
Author(s):  
Cigong Yu ◽  
Zhihong Fu ◽  
Gaolin Wu ◽  
Liuyuan Zhou ◽  
Xuegui Zhu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lei Zhang ◽  
Lin Xu ◽  
Yong Xiao ◽  
NingBo Zhang

A coal mine in Datong is an integrated mine. At present, there is goaf in the upper and lower part of the mining coal seam. There is a lot of ponding in the goaf, which has great potential safety hazards for production. In order to find out the scope and location of ponding in goaf, the comprehensive geophysical exploration method combining transient electromagnetic method and high-density resistivity method is used to carry out the research. Firstly, the time-base, turn-off time, receiving delay, current, superposition times, and other parameters of the instrument are tested on the surface of known goaf to obtain the best instrument parameters, and the parameters are used to verify the feasibility of the research scheme; then, the transient electromagnetic method is used for large-area exploration on the surface of the mine, the suspected goaf ponding area is found through comprehensive analysis, and the high-density resistivity exploration is arranged in the suspected goaf ponding area. According to the obtained results, the scope and location of the goaf ponding area are accurately located through comprehensive analysis. The results show that there are two goaf ponding areas in the exploration area, which are located above the 8# coal seam currently mined; the range and location of goaf ponding area can be accurately obtained by using the comprehensive geophysical method of high-density electrical method and transient electromagnetic method. This method can provide reference for mine water prevention and control in Datong area and has great practical significance to ensure coal mine safety production.


2018 ◽  
Vol 23 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Guo-qiang Xue

Near-source electromagnetic technology has been developed and applied in the exploration of petroleum, metallic ore, coal, and engineering geology due to its high efficiency, high detection accuracy, and deep depth of investigation. In this paper, research and applications of the frequency-domain electromagnetic sounding method (FDEM), wide-field electromagnetic method (WFEM), modified central-loop transient electromagnetic method (TEM), and short-offset grounded-wire TEM (SOTEM) with obvious near-source characteristics, were reviewed and analyzed. From the 1960s to 1990s, the FDEM method and equipment were extensively developed in China. These methods have played important roles in the exploration of coal resources. Based on controlled source audio-frequency magnetotelluric (CSAMT) and FDEM methods, a new method has been developed by deriving a new expression to calculate apparent resistivity. This method, which is referred to as WFEM, has been studied, applied, and received great attention in China. To increase work efficiency and reduce the influence of local transverse anisotropy on the detection processes, a modified central-loop TEM detection technology based on the central loop transient electromagnetic method was developed in China. The advantages of SOTEM in near-source surveys with high resolution and increased depth detection stimulated academic research interest to further develop grounded-wire TEM techniques. [Figure: see text]


2021 ◽  
Author(s):  
Farah Syazana Dzulkefli ◽  
Kefeng Xin ◽  
Ahmad Riza Ghazali ◽  
Guo Qiang ◽  
Tariq Alkhalifah

Abstract Salt is known for having a generally low density and higher velocity compared with the surrounding rock layers which causes the energy to scatter once the seismic wavefield hits the salt body and relatively less energy is transmitted through the salt to the deeper subsurface. As a result, most of imaging approaches are unable to image the base of the salt and the reservoir below the salt. Even the velocity model building such as FWI often fails to illuminate the deeper parts of salt area. In this paper, we show that Full Wavefield Redatuming (FWR) is used to retrieved and enhance the seismic data below the salt area, leading to a better seismic image quality and allowing us to focus on updating the velocity in target area below the salt. However, this redatuming approach requires a good overburden velocity model to retrieved good redatumed data. Thus, by using synthetic SEAM model, our objective is to study on the accuracy of the overburden velocity model required for imaging beneath complex overburden. The results show that the kinematic components of wave propagation are preserved through redatuming even with heavily smoothed overburden velocity model.


Sign in / Sign up

Export Citation Format

Share Document