scholarly journals A User’s Guide to Topological Data Analysis

2017 ◽  
Vol 4 (2) ◽  
Author(s):  
Elizabeth Munch

Topological data analysis (TDA) is a collection of powerful tools that can quantify shape and structure in data in order to answer questions from the data’s domain. This is done by representing some aspect of the structure of the data in a simplified topological signature. In this article, we introduce two of the most commonly used topological signatures. First, the persistence diagram represents loops and holes in the space by considering connectivity of the data points for a continuum of values rather than a single fixed value. The second topological signature, the mapper graph, returns a 1-dimensional structure representing the shape of the data, and is particularly good for exploration and visualization of the data. While these techniques are based on very sophisticated mathematics, the current ubiquity of available software means that these tools are more accessible than ever to be applied to data by researchers in education and learning, as well as all domain scientists.

2020 ◽  
Vol 36 (18) ◽  
pp. 4805-4809
Author(s):  
Kieran Walsh ◽  
Mircea A Voineagu ◽  
Fatemeh Vafaee ◽  
Irina Voineagu

Abstract Summary TDAview is an online tool for topological data analysis (TDA) and visualization. It implements the Mapper algorithm for TDA and provides extensive graph visualization options. TDAview is a user-friendly tool that allows biologists and clinicians without programming knowledge to harness the power of TDA. TDAview supports an analysis and visualization mode in which a Mapper graph is constructed based on user-specified parameters, followed by graph visualization. It can also be used in a visualization only mode in which TDAview is used for visualizing the data properties of a Mapper graph generated using other open-source software. The graph visualization options allow data exploration by graphical display of metadata variable values for nodes and edges, as well as the generation of publishable figures. TDAview can handle large datasets, with tens of thousands of data points, and thus has a wide range of applications for high-dimensional data, including the construction of topology-based gene co-expression networks. Availability and implementation TDAview is a free online tool available at https://voineagulab.github.io/TDAview/. The source code, usage documentation and example data are available at TDAview GitHub repository: https://github.com/Voineagulab/TDAview.


2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Maria-Veronica Ciocanel ◽  
Riley Juenemann ◽  
Adriana T. Dawes ◽  
Scott A. McKinley

AbstractIn developmental biology as well as in other biological systems, emerging structure and organization can be captured using time-series data of protein locations. In analyzing this time-dependent data, it is a common challenge not only to determine whether topological features emerge, but also to identify the timing of their formation. For instance, in most cells, actin filaments interact with myosin motor proteins and organize into polymer networks and higher-order structures. Ring channels are examples of such structures that maintain constant diameters over time and play key roles in processes such as cell division, development, and wound healing. Given the limitations in studying interactions of actin with myosin in vivo, we generate time-series data of protein polymer interactions in cells using complex agent-based models. Since the data has a filamentous structure, we propose sampling along the actin filaments and analyzing the topological structure of the resulting point cloud at each time. Building on existing tools from persistent homology, we develop a topological data analysis (TDA) method that assesses effective ring generation in this dynamic data. This method connects topological features through time in a path that corresponds to emergence of organization in the data. In this work, we also propose methods for assessing whether the topological features of interest are significant and thus whether they contribute to the formation of an emerging hole (ring channel) in the simulated protein interactions. In particular, we use the MEDYAN simulation platform to show that this technique can distinguish between the actin cytoskeleton organization resulting from distinct motor protein binding parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Scott Broderick ◽  
Ruhil Dongol ◽  
Tianmu Zhang ◽  
Krishna Rajan

AbstractThis paper introduces the use of topological data analysis (TDA) as an unsupervised machine learning tool to uncover classification criteria in complex inorganic crystal chemistries. Using the apatite chemistry as a template, we track through the use of persistent homology the topological connectivity of input crystal chemistry descriptors on defining similarity between different stoichiometries of apatites. It is shown that TDA automatically identifies a hierarchical classification scheme within apatites based on the commonality of the number of discrete coordination polyhedra that constitute the structural building units common among the compounds. This information is presented in the form of a visualization scheme of a barcode of homology classifications, where the persistence of similarity between compounds is tracked. Unlike traditional perspectives of structure maps, this new “Materials Barcode” schema serves as an automated exploratory machine learning tool that can uncover structural associations from crystal chemistry databases, as well as to achieve a more nuanced insight into what defines similarity among homologous compounds.


CHANCE ◽  
2021 ◽  
Vol 34 (2) ◽  
pp. 59-64
Author(s):  
Nicole Lazar ◽  
Hyunnam Ryu

Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 634
Author(s):  
Tarek Frahi ◽  
Francisco Chinesta ◽  
Antonio Falcó ◽  
Alberto Badias ◽  
Elias Cueto ◽  
...  

We are interested in evaluating the state of drivers to determine whether they are attentive to the road or not by using motion sensor data collected from car driving experiments. That is, our goal is to design a predictive model that can estimate the state of drivers given the data collected from motion sensors. For that purpose, we leverage recent developments in topological data analysis (TDA) to analyze and transform the data coming from sensor time series and build a machine learning model based on the topological features extracted with the TDA. We provide some experiments showing that our model proves to be accurate in the identification of the state of the user, predicting whether they are relaxed or tense.


Sign in / Sign up

Export Citation Format

Share Document