scholarly journals Laminin α4 overexpression in the anterior lens capsule may contribute to the senescence of human lens epithelial cells in age-related cataract

Aging ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2699-2723 ◽  
Author(s):  
Yu Yan ◽  
Haiyang Yu ◽  
Liyao Sun ◽  
Hanruo Liu ◽  
Chao Wang ◽  
...  
1995 ◽  
Vol 35 ◽  
pp. S199
Author(s):  
J.H. Meyer ◽  
J. Schmidt ◽  
F. Eppinger ◽  
B. Flügel ◽  
K.U. Löffler ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Jiaojie Zhou ◽  
Ke Yao ◽  
Yidong Zhang ◽  
Guangdi Chen ◽  
Kairan Lai ◽  
...  

Oxidative stress plays an essential role in the development of age-related cataract. Thioredoxin binding protein-2 (TBP-2) is a negative regulator of thioredoxin (Trx), which deteriorates cellular antioxidant system. Our study focused on the autophagy-regulating effect of TBP-2 under oxidative stress in human lens epithelial cells (LECs). Human lens epithelial cells were used for cell culture and treatment. Lentiviral-based transfection system was used for overexpression of TBP-2. Cytotoxicity assay, western blot analysis, GFP/mCherry-fused LC3 plasmid, immunofluorescence, and transmission electronic microscopy were performed. The results showed that autophagic response of LECs with increased LC3-II, p62, and GFP/mCherry-LC3 puncta (P<0.01) was induced by oxidative stress. Overexpression of TBP-2 further strengthens this response and worsens the cell viability (P<0.01). Knockdown of TBP-2 attenuates the autophagic response and cell viability loss induced by oxidative stress. TBP-2 mainly regulates autophagy in the initiation stage, which is mTOR-independent and probably caused by the dephosphorylation of Akt under oxidative stress. These findings suggest a novel role of TBP-2 in human LECs under oxidative stress. Oxidative stress can cause cell injury and autophagy in LECs, and TBP-2 regulates this response. Hence, this study provides evidence regarding the role of TBP-2 in lens and the possible mechanism of cataract development.


2001 ◽  
Vol 33 (6) ◽  
pp. 363-366 ◽  
Author(s):  
Hideaki Oharazawa ◽  
Nobuhiro Ibaraki ◽  
Hironori Matsui ◽  
Kunitoshi Ohara

2004 ◽  
Vol 80 (3) ◽  
pp. 583 ◽  
Author(s):  
Yu-Ying He ◽  
Colin F. Chignell ◽  
David S. Miller ◽  
Usha P. Andley ◽  
Joan E. Roberts

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1473
Author(s):  
Belal I. Hanafy ◽  
Gareth W. V. Cave ◽  
Yvonne Barnett ◽  
Barbara K. Pierscionek

Cerium oxide nanoparticles (nanoceria) are generally known for their recyclable antioxidative properties making them an appealing biomaterial for protecting against physiological and pathological age-related changes that are caused by reactive oxygen species (ROS). Cataract is one such pathology that has been associated with oxidation and glycation of the lens proteins (crystallins) leading to aggregation and opacification. A novel coated nanoceria formulation has been previously shown to enter the human lens epithelial cells (HLECs) and protect them from oxidative stress induced by hydrogen peroxide (H2O2). In this work, the mechanism of nanoceria uptake in HLECs is studied and multiple anti-cataractogenic properties are assessed in vitro. Our results show that the nanoceria provide multiple beneficial actions to delay cataract progression by (1) acting as a catalase mimetic in cells with inhibited catalase, (2) improving reduced to oxidised glutathione ratio (GSH/GSSG) in HLECs, and (3) inhibiting the non-enzymatic glucose-induced glycation of the chaperone lens protein α-crystallin. Given the multifactorial nature of cataract progression, the varied actions of nanoceria render them promising candidates for potential non-surgical therapeutic treatment.


Sign in / Sign up

Export Citation Format

Share Document