scholarly journals Distribution patterns of microsatellites and development of its marker in different genomic regions of forest musk deer genome based on high throughput sequencing

Aging ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 4445-4462
Author(s):  
Wen-Hua Qi ◽  
Ting Lu ◽  
Cheng-Li Zheng ◽  
Xue-Mei Jiang ◽  
Hang Jie ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Xiaolong Hu ◽  
Gang Liu ◽  
Aaron B. A. Shafer ◽  
Yuting Wei ◽  
Juntong Zhou ◽  
...  


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6733 ◽  
Author(s):  
Yangchun Gao ◽  
Yiyong Chen ◽  
Wei Xiong ◽  
Shiguo Li ◽  
Aibin Zhan

Background Dinoflagellates have the potential to pose severe ecological and economic damages to aquatic ecosystems. It is therefore largely needed to understand the causes and consequences of distribution patterns of dinoflagellate communities in order to manage potential environmental problems. However, a majority of studies have focused on marine ecosystems, while the geographical distribution patterns of dinoflagellate communities and associated determinants in freshwater ecosystems remain unexplored, particularly in running water ecosystems such as rivers and streams. Methods Here we utilized multiple linear regression analysis and combined information on species composition recovered by high-throughput sequencing and spatial and environmental variables to analyze the distribution patterns of dinoflagellate communities along the Songhua River. Results After high-throughput sequencing, a total of 490 operational taxonomic units (OTUs) were assigned to dinoflagellates, covering seven orders, 13 families and 22 genera. Although the sample sites were grouped into three distinctive clusters with significant difference (p < 0.05) in environmental variables, OTUs-based dinoflagellate communities among the three clusters showed no significant difference (p > 0.05). Among all 24 environmental factors, two environmental variables, including NO3-N and total dissolved solids (TDS), were selected as the significantly influential factors (p < 0.05) on the distribution patterns of dinoflagellate communities based on forward selection. The redundancy analysis (RDA) model showed that only a small proportion of community variation (6.1%) could be explained by both environmental (NO3-N and TDS) and dispersal predictors (watercourse distance) along the River. Variance partitioning revealed a larger contribution of local environmental factors (5.85%) than dispersal (0.50%) to the total variation of dinoflagellate communities. Discussion Our findings indicated that in addition to the two quantifiable processes in this study (species sorting and dispersal), more unquantifiable stochastic processes such as temporal extinction and colonization events due to rainfall may be responsible for the observed geographical distribution of the dinoflagellate community along the Songhua River. Results obtained in this study suggested that deeper investigations covering different seasons are needed to understand the causes and consequences of geographical distribution patterns of dinoflagellate biodiversity in river ecosystems.



2018 ◽  
Author(s):  
Simon P Sadedin ◽  
Alicia Oshlack

AbstractBackgroundAs costs of high throughput sequencing have fallen, we are seeing vast quantities of short read genomic data being generated. Often, the data is exchanged and stored as aligned reads, which provides high compression and convenient access for many analyses. However, aligned data becomes outdated as new reference genomes and alignment methods become available. Moreover, some applications cannot utilise pre-aligned reads at all, necessitating conversion back to raw format (FASTQ) before they can be used. In both cases, the process of extraction and realignment is expensive and time consuming.FindingsWe describe Bazam, a tool that efficiently extracts the original paired FASTQ from reads stored in aligned form (BAM or CRAM format). Bazam extracts reads in a format that directly allows realignment with popular aligners with high concurrency. Through eliminating steps and increasing the accessible concurrency, Bazam facilitates up to a 90% reduction in the time required for realignment compared to standard methods. Bazam can support selective extraction of read pairs from focused genomic regions, further increasing efficiency for targeted analyses. Bazam is additionally suitable as a base for other applications that require efficient paired read information, such as quality control, structural variant calling and alignment comparison.ConclusionsBazam offers significant improvements for users needing to realign genomic data.



Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 592 ◽  
Author(s):  
Rachid Tahzima ◽  
Yoika Foucart ◽  
Gertie Peusens ◽  
Tim Beliën ◽  
Sébastien Massart ◽  
...  

Little cherry disease, caused by little cherry virus 1 (LChV-1) and little cherry virus 2 (LChV-2), which are both members of the family Closteroviridae, severely affects sweet (Prunus avium L.) and sour cherry (P. cerasus L.) orchards lifelong production worldwide. An intensive survey was conducted across different geographic regions of Belgium to study the disease presence on these perennial woody plants and related species. Symptomatic as well as non-symptomatic Prunus spp. trees tested positive via RT-PCR for LChV-1 and -2 in single or mixed infections, with a slightly higher incidence for LChV-1. Both viruses were widespread and highly prevalent in nearly all Prunus production areas as well as in private gardens and urban lane trees. The genetic diversity of Belgian LChV-1 and -2 isolates was assessed by Sanger sequencing of partial genomic regions. A total RNA High-Throughput Sequencing (HTS) approach confirmed the presence of both viruses, and revealed the occurrence of other Prunus-associated viruses, namely cherry virus A (CVA), prune dwarf virus (PDV) and prunus virus F (PrVF). The phylogenetic inference from full-length genomes revealed well-defined evolutionary phylogroups with high genetic variability and diversity for LChV-1 and LChV-2 Belgian isolates, yet with little or no correlation with planting area or cultivated varieties. The global diversity and the prevalence in horticultural areas of LChV-1 and -2 variants, in association with other recently described fruit tree viruses, are of particular concern. Future epidemiological implications as well as new investigation avenues are exhaustively discussed.





Sign in / Sign up

Export Citation Format

Share Document