Peri-implant Alveolar Bone Augmentation Using Allogeneic Marrow-Derived Stem Cells; A Pilot Study in the Canine Mandible

Author(s):  
Luisa F. Echeto ◽  
Ingeborg J. De Kok ◽  
Debra Sacco ◽  
Susan J. Drapeau ◽  
Lyndon F. Cooper
2014 ◽  
Vol 9 (6) ◽  
pp. 497-503 ◽  
Author(s):  
Sarah Broeckx ◽  
Marc Suls ◽  
Charlotte Beerts ◽  
Aurelie Vandenberghe ◽  
Bert Seys ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 381
Author(s):  
Hyunmin Choi ◽  
Kyu-Hyung Park ◽  
Narae Jung ◽  
June-Sung Shim ◽  
Hong-Seok Moon ◽  
...  

The aim of this study was to investigate the behavior of dental-derived human mesenchymal stem cells (d-hMSCs) in response to differently surface-treated implants and to evaluate the effect of d-hMSCs on local osteogenesis around an implant in vivo. d-hMSCs derived from alveolar bone were established and cultured on machined, sandblasted and acid-etched (SLA)-treated titanium discs with and without osteogenic induction medium. Their morphological and osteogenic potential was assessed by scanning electron microscopy (SEM) and real-time polymerase chain reaction (RT-PCR) via mixing of 5 × 106 of d-hMSCs with 1 mL of Metrigel and 20 μL of gel-cell mixture, which was dispensed into the defect followed by the placement of customized mini-implants (machined, SLA-treated implants) in New Zealand white rabbits. Following healing periods of 2 weeks and 12 weeks, the obtained samples in each group were analyzed radiographically, histomorphometrically and immunohistochemically. The quantitative change in osteogenic differentiation of d-hMSCs was identified according to the type of surface treatment. Radiographic analysis revealed that an increase in new bone formation was statistically significant in the d-hMSCs group. Histomorphometric analysis was in accordance with radiographic analysis, showing the significantly increased new bone formation in the d-hMSCs group regardless of time of sacrifice. Human nuclei A was identified near the area where d-hMSCs were implanted but the level of expression was found to be decreased as time passed. Within the limitations of the present study, in this animal model, the transplantation of d-hMSCs enhanced the new bone formation around an implant and the survival and function of the stem cells was experimentally proven up to 12 weeks post-sacrifice.


Materials ◽  
2015 ◽  
Vol 8 (6) ◽  
pp. 2953-2993 ◽  
Author(s):  
Zeeshan Sheikh ◽  
Corneliu Sima ◽  
Michael Glogauer

Materials ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 238 ◽  
Author(s):  
Su Park ◽  
Hyo-Jung Lee ◽  
Keun-Suh Kim ◽  
Sang Lee ◽  
Jung-Tae Lee ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Wang ◽  
Delong Jiao ◽  
Xiaofeng Huang ◽  
Yuxing Bai

Abstract Background During orthodontic tooth movement (OTM), alveolar bone remodelling is closely related to mechanical force. It is unclear whether stem cells can affect osteoclastogenesis to promote OTM. This study aimed to investigate the role of mouse bone marrow mesenchymal stem cells (mBMMSCs) under compression load in OTM. Methods A mouse OTM model was established, and GFP-labelled mBMMSCs and normal saline were injected into different groups of mice by tail vein injection. OTM distance was measured using tissue specimens and micro-computed tomography (micro-CT). The locations of mBMMSCs were traced using GFP immunohistochemistry. Haematoxylin-eosin staining, tartrate-resistant acid phosphate (TRAP) staining and immunohistochemistry of Runx2 and lipoprotein lipase were used to assess changes in the periodontal ligament during OTM. mBMMSCs under compression were co-cultured with mouse bone marrow-derived macrophages (mBMMs), and the gene expression levels of Rankl, Mmp-9, TRAP, Ctsk, Alp, Runx2, Ocn and Osterix were determined by RT-PCR. Results Ten days after mBMMSCs were injected into the tail vein of mice, the OTM distance increased from 176 (normal saline) to 298.4 μm, as determined by tissue specimen observation, and 174.2 to 302.6 μm, as determined by micro-CT metrological analysis. GFP-labelled mBMMSCs were mostly located on the compressed side of the periodontal ligament. Compared to the saline group, the number of osteoclasts in the alveolar bone increased significantly (P < 0.01) on the compressed side in the mBMMSC group. Three days after mBMMSC injection, the number of Runx2-GFP double-positive cells on the tension side was significantly higher than that on the compression side. After applying compressive force on the mBMMSCs in vitro for 2 days, RANKL expression was significantly higher than in the non-compression cells, but expression of Alp, Runx2, Ocn and Osterix was significantly decreased (P < 0.05). The numbers of osteoclasts differentiated in response to mBMMs co-cultured with mBMMSCs under pressure load and expression of osteoclast differentiation marker genes (Mmp-9, TRAP and Ctsk) were significantly higher than those in mBMMs stimulated by M-CSF alone (P < 0.05). Conclusions mBMMSCs are not only recruited to the compressed side of the periodontal ligament but can also promote osteoclastogenesis by expressing Rankl, improving the efficiency of OTM.


2015 ◽  
Vol 193 (4S) ◽  
Author(s):  
Marta Garcia-Contreras ◽  
Cesar Vera-Donoso ◽  
José Hernández-Andreu ◽  
José García-Verdugo ◽  
Elisa Oltra

Sign in / Sign up

Export Citation Format

Share Document