scholarly journals In Vivo Evaluation of 3D-Printed Polycaprolactone Scaffold Implantation Combined with β-TCP Powder for Alveolar Bone Augmentation in a Beagle Defect Model

Materials ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 238 ◽  
Author(s):  
Su Park ◽  
Hyo-Jung Lee ◽  
Keun-Suh Kim ◽  
Sang Lee ◽  
Jung-Tae Lee ◽  
...  
2019 ◽  
Vol 7 (20) ◽  
pp. 3250-3259 ◽  
Author(s):  
Yali Miao ◽  
Yunhua Chen ◽  
Xiao Liu ◽  
Jingjing Diao ◽  
Naru Zhao ◽  
...  

3D-printed β-TCP scaffolds decorated with melatonin via dopamine mussel-inspired chemistry enhance the osteogenesis and in vivo bone regeneration.


2018 ◽  
Vol Volume 12 ◽  
pp. 1997-2003 ◽  
Author(s):  
Hong Ruan ◽  
Youcheng Yu ◽  
Xuehua Guo ◽  
Qian Jiang ◽  
Ying Luo

Author(s):  
Helio de Jesus Kiyochi Junior ◽  
Aline Gabriela Candido ◽  
Taiana Gabriela Moretti Bonadio ◽  
José Adauto da Cruz ◽  
Mauro Luciano Baesso ◽  
...  

Biomaterials ◽  
2004 ◽  
Vol 25 (20) ◽  
pp. 5037-5044 ◽  
Author(s):  
D. Stubbs ◽  
M. Deakin ◽  
P. Chapman-Sheath ◽  
W. Bruce ◽  
J. Debes ◽  
...  

2018 ◽  
Vol 128 ◽  
pp. 282-289 ◽  
Author(s):  
Basel Arafat ◽  
Nidal Qinna ◽  
Milena Cieszynska ◽  
Robert T. Forbes ◽  
Mohamed A. Alhnan

2019 ◽  
Vol 32 (02) ◽  
pp. 139-148 ◽  
Author(s):  
John Davies ◽  
Albert Lynch

Objective The main aim of this study was to evaluate a percutaneous method of bone alignment using a diaphyseal tibial fracture model. Materials and Methods Mid-shaft diaphyseal fractures were created in 12 large-breed canine tibiae. Interaction pins were inserted into the proximal and distal bone segments. Computed tomography scans of the fractured tibiae and pins were imported into three-dimensional (3D) modelling software and the fractures were virtually reduced. A multi-component 3D printed alignment jig was created that encompassed the pins in their aligned configuration. Orthogonal radiographs were taken after alignment jig application. Intact and post-alignment tibial lengths and joint angles were compared. Rotational alignment was subjectively evaluated. Results Post-alignment tibial lengths differed on the mediolateral and craniocaudal radiographs by an average of 1.55 and 1.43% respectively. Post-alignment mechanical medial proximal tibial angle, mechanical medial distal tibial angle and mechanical caudal proximal tibial angle had an average difference of 1.67°, 1.92° and 2.17° respectively. Differences in tibial length and joint angles were not significant (p > 0.05). Clinical Significance While in vivo evaluation is necessary, this technique to align diaphyseal fractures percutaneously using computer modelling and 3D printing is technically feasible and may facilitate the clinical use of minimally invasive osteosynthesis techniques.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Beom Su Kim ◽  
Feride Shkembi ◽  
Jun Lee

Alendronate (ALN) is a bisphosphonate drug that is widely used for the treatment of osteoporosis. Furthermore, local delivery of ALN has the potential to improve the bone regeneration. This study was designed to investigate an ALN-containing fibrin (fibrin/ALN) gel and evaluate the effect of this gel on both in vitro cellular behavior using human mesenchymal stem cells (hMSCs) and in vivo bone regenerative capacity. Fibrin hydrogels were fabricated using various ALN concentrations (10−7–10−4 M) with fibrin glue and the morphology, mechanical properties, and ALN release kinetics were characterized. Proliferation and osteogenic differentiation of and cytotoxicity in fibrin/ALN gel-embedded hMSCs were examined. In vivo bone formation was evaluated using a rabbit calvarial defect model. The fabricated fibrin/ALN gel was transparent with Young’s modulus of ~13 kPa, and these properties were not affected by ALN concentration. The in vitro studies showed sustained release of ALN from the fibrin gel and revealed that hMSCs cultured in fibrin/ALN gel showed significantly increased proliferation and osteogenic differentiation. In addition, microcomputed tomography and histological analysis revealed that the newly formed bone was significantly enhanced by implantation of fibrin/ALN gel in a calvarial defect model. These results suggest that fibrin/ALN has the potential to improve bone regeneration.


2015 ◽  
Vol 27 (03) ◽  
pp. 1550028 ◽  
Author(s):  
Kam-Kong Chan ◽  
Chia-Hsien Chen ◽  
Lien-Chen Wu ◽  
Yi-Jie Kuo ◽  
Chun-Jen Liao ◽  
...  

Calcium phosphate ceramics, of a similar composition to that of mineral bone, and which possess the properties of bioactivity and osteoconductivity, have been widely used as substitutes for bone graft in orthopedic, plastic and craniofacial surgeries. A synthetic β-tricalcium phosphate, Osteocera™, a recently developed bone graft substitute, has been used in this study. To evaluate the affinity and efficacy of Osteocera™ as bone defect implant, we used a New Zealand white rabbit femur defect model to test the osteoconductivity of this new bone substitute. Alternative commercially available bone substitutes, Triosite® and ProOsteon500, were used as the control materials. These three bone substitutes show good biocompatibility, and no abnormal inflammation either infection was seen at the implantation sites. In the histological and histomorphometric images, newly formed bone grew into the peripheral pores in the bone substitutes. After six months implantation, the volume of bone formation was found to be 20.5 ± 5.2%, 29.8 ± 6.5% and 75.5 ± 4.9% of the potential total cavity offered by ProOsteon500, Triosite® and Osteocera™, respectively. The newly formed bone area within the femur defect section for Osteocera™ was significantly larger than ProOsteon500 and Triosite®. We concluded that Osteocera™ shows better bioresorbability, biocompatibility and osteoconductivity in the rabbit femur defect model.


2021 ◽  
Vol 10 (12) ◽  
pp. 2654
Author(s):  
David Muallah ◽  
Philipp Sembdner ◽  
Stefan Holtzhausen ◽  
Heike Meissner ◽  
André Hutsky ◽  
...  

Three dimensional (3D) printing allows additive manufacturing of patient specific scaffolds with varying pore size and geometry. Such porous scaffolds, made of 3D-printable bone-like calcium phosphate cement (CPC), are suitable for bone augmentation due to their benefit for osteogenesis. Their pores allow blood-, bone- and stem cells to migrate, colonize and finally integrate into the adjacent tissue. Furthermore, the pore size affects the scaffold’s stability. Since scaffolds in maxillofacial surgery have to withstand high forces within the jaw, adequate mechanical properties are of high clinical importance. Although many studies have investigated CPC for bone augmentation, the ideal porosity for specific indications has not been defined yet. We investigated 3D printed CPC cubes with increasing pore sizes and different printing orientations regarding cell migration and mechanical properties in comparison to commercially available bone substitutes. Furthermore, by investigating clinical cases, the scaffolds’ designs were adapted to resemble the in vivo conditions as accurately as possible. Our findings suggest that the pore size of CPC scaffolds for bone augmentation in maxillofacial surgery necessarily needs to be adapted to the surgical site. Scaffolds for sites that are not exposed to high forces, such as the sinus floor, should be printed with a pore size of 750 µm to benefit from enhanced cell infiltration. In contrast, for areas exposed to high pressures, such as the lateral mandible, scaffolds should be manufactured with a pore size of 490 µm to guarantee adequate cell migration and in order to withstand the high forces during the chewing process.


Sign in / Sign up

Export Citation Format

Share Document