scholarly journals Influence of Heat Exchange Intensity in the Rocket Thrust Chamber on the Cooling Channel Efficiency

Author(s):  
В.П. Александренков ◽  
2021 ◽  
pp. 1-11
Author(s):  
Thomas Govaert ◽  
Wolfgang Armbruster ◽  
Justin S. Hardi ◽  
Dmitry Suslov ◽  
Michael Oschwald ◽  
...  

2019 ◽  
Vol 35 (3) ◽  
pp. 632-644 ◽  
Author(s):  
Wolfgang Armbruster ◽  
Justin S. Hardi ◽  
Dmitry Suslov ◽  
Michael Oschwald

2018 ◽  
Vol 245 ◽  
pp. 07002 ◽  
Author(s):  
Vladimir Davletbaev ◽  
Natalia Rydalina ◽  
Elena Antonova

We study heat exchangers at the experimental setup aiming at the energy-saving. The feature of this heat exchange process is of the fact that the working medium is a porous metal. The pores are filled with freon and operation of the refrigeration unit condenser is studied. The scheme of the experimental setup and experiment methodology are given. The results of the experiment and its processing are also presented.


1962 ◽  
Vol 84 (1) ◽  
pp. 19-28 ◽  
Author(s):  
William E. Welsh ◽  
Arvel B. Witte

Experimental data are presented showing heat-flux distributions measured calorimetrically with several liquid-propellant rocket thrust-chamber configurations. Thrust levels of the experimental chambers were from 300 to 5000 lb. Enzian-type and axial-stream showerhead propellant injectors were utilized with hydrazine (N2H4) and nitrogen tetroxide (N2O4) propellants. Nozzle-contraction-area ratios of 8 to 1, 4 to 1, and 1.64 to 1 were tested, each having a 5-in. inlet diameter. Characteristic chamber lengths ranged from 16.95 to 62.8 in. The comparison between the experimental heat flux and the analytical heat flux using the method of Bartz [1] was found to be closest in the nozzle-expansion region. The experimental heat-flux measurements ranged between 80 per cent above and 45 per cent below the analytical estimates at the nozzle throat, however. These differences were dependent upon thrust-chamber configuration, injector type, and chamber pressure, and apparently resulted from nonideal combustion and flow characteristics. It is concluded that a priori determination of heat-flux distribution along the thrust-chamber length was possible only to a first approximation for the conditions of these tests.


Sign in / Sign up

Export Citation Format

Share Document