Use of Turboprop Fans with the Device for Intensification of Aeration of Open Pits for Ventilation of Mined-Out Space

Author(s):  
I.I. Starostin ◽  
A.V. Bondarenko

The application of open-pit fans on the basis of turboprop aircraft engines, working in complex with the devices for intensification of aeration of worked-out space, for ventilation of open-pit mines is considered. The most effective for the open-pit mines ventilation is the use of isothermal jets created by the mine fans with gas-turbine aviation engines. The principle design of the device for intensification of open pits airing represents inclined profiled blades installed on supports. Such a design allows to direct the developed ventilation jet into the quarry, as well as to increase its velocity at the outlet into the mined-out space in the constructions of confusers (blades--top platform of leeward side). The application of the complex, consisting of the ventilation installation and the device of quarries aeration intensification, installed on the surface, allows to increase considerably the volume of the air, supplied to the worked-out space, in comparison with the location of the fan in the pit, to decrease the noise levels in the working zones. By means of modeling qualitative and quantitative aerodynamic characteristics of the offered ventilation scheme (location of the fan and aeration intensifier, pattern of air currents in the quarry, speeds distribution) are defined, its application efficiency and conditions are evaluated

Author(s):  
Александр Анатолиевич Тамаргазин ◽  
Людмила Борисовна Приймак ◽  
Валерий Владиславович Шостак

The presence on modern aviation gas-turbine engines of dozens and even hundreds of sensors for continuous registration of various parameters of their operation makes it possible to collect and process large amounts of information. This stimulates the development of monitoring and diagnostic systems. At the same time the presence of great volumes of information is not always a sufficient condition for making adequate managerial decisions, especially in the case of evaluation of the technical condition of aviation engines. Thus it is necessary to consider, that aviation engines it is objects which concern to individualized, i.e. to such which are in the sort unique. Therefore, the theory of creating systems to assess the technical state of aircraft engines is formed on the background of the development of modern neural network technology and requires the formation of specific methodological apparatus. From these positions in the article the methods which are used at carrying out clustering of the initial information received at work of modern systems of an estimation and forecasting of a technical condition of aviation gas-turbine engines are considered. This task is particularly relevant for creating neural network multimode models of aircraft engines used in technical state estimation systems for identification of possible failures and damages. Metric, optimization and recurrent methods of input data clustering are considered in the article. The main attention is given to comparison of clustering methods in order to choose the most effective of them for the aircraft engine condition evaluation systems and suitable for implementation of systems with meta-learning. The implementation of clustering methods of initial data allows us to breakdown diagnostic images of objects not by one parameter, but by a whole set of features. In addition, cluster analysis, unlike most mathematical-statistical methods do not impose any restrictions on the type of objects under consideration, and allows us to consider a set of raw data of almost arbitrary nature, which is very important when assessing the technical condition of aircraft engines. At the same time cluster analysis allows one to consider a sufficiently large volume of information and sharply reduce, compress large arrays of parametrical information, make them compact and visual.


Author(s):  
G. N. Shapovalenko ◽  
S. N. Radionov ◽  
V. V. Gorbunov ◽  
V. A. Khazhiev ◽  
V. Yu. Zalyadnov ◽  
...  

Chernogosky open pit mine integrates truck-and-shovel system of mining with overburden rehandling to internal dump with a set of walking excavators for rehandling of overburden to mined-out area of the pit. It is possible to improve efficiency of stripping in the conditions of Chernogorsky OPM by reducing percentage of stripping with more expensive handling system. The relevant research and solutions to this effect are presented in this article. Comparative characterization of mining conditions and parameters of mining systems applied is given for open pit mines Chernogorsky, Turnui, Nazarovsky, Vostochno-Beisky and Izykh. The comparative analysis points at the need to account for difficulty of mining and process sites in comparison of equipment productivity. High concentration of mining machines, which is conditioned by narrow mining front and simultaneous operation of five faces, as well as blasting operation implemented every 1-2 days, are recognized as the main constraints of excavator capacity in mining with direct dumping in Chernogorsky open pit mine. The management and engineering solutions implemented in the mine and resulted in higher efficiency of draglines are described.


2018 ◽  
Vol 5 ◽  
pp. 59-64
Author(s):  
P.A. Prokhorov ◽  
◽  
Val.V. Sencus ◽  
A.L. Mansurov ◽  
◽  
...  

2019 ◽  
Vol 4 ◽  
pp. 152-160
Author(s):  
L.I. Kantovich ◽  
◽  
O.I. Litvin ◽  
A.A. Khoreshok ◽  
E.A. Tyuleneva ◽  
...  

Energy ◽  
2021 ◽  
pp. 120665
Author(s):  
Koichi Yonezawa ◽  
Genki Nakai ◽  
Masahiro Takayasu ◽  
Kazuyasu Sugiyama ◽  
Katsuhiko Sugita ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 6971
Author(s):  
Mikhail Zarubin ◽  
Larissa Statsenko ◽  
Pavel Spiridonov ◽  
Venera Zarubina ◽  
Noune Melkoumian ◽  
...  

This research article presents a software module for the environmental impact assessment (EIA) of open pit mines. The EIA software module has been developed based on the comprehensive examination of both country-specific (namely, Kazakhstan) and current international regulatory frameworks, legislation and EIA methodologies. EIA frameworks and methods have been critically evaluated, and mathematical models have been developed and implemented in the GIS software module ‘3D Quarry’. The proposed methodology and software module allows for optimised EIA calculations of open pit mines, aiming to minimise the negative impacts on the environment. The study presents an original methodology laid out as a basis for a software module for environmental impact assessment on atmosphere, water basins, soil and subsoil, tailored to the context of mining operations in Kazakhstan. The proposed software module offers an alternative to commercial off-the-shelf software packages currently used in the mining industry and is suitable for small mining operators in post-Soviet countries. It is anticipated that applications of the proposed software module will enable the transition to sustainable development in the Kazakh mining industry.


Sign in / Sign up

Export Citation Format

Share Document