hydraulic excavators
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 67)

H-INDEX

10
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 605
Author(s):  
Thanh-Ha Nguyen ◽  
Tri-Cuong Do ◽  
Kyoung-Kwan Ahn

Nowadays, hydraulic excavators are an indispensable part of the construction industry; however, conventional hydraulic excavators consume a great deal of fossil fuel and release a large amount of pollution emissions into the environment. This causes many unwanted costs, therefore, effective solutions are required to solve the above-mentioned problems. In this paper, a new independent metering system is proposed to improve energy-saving and reduce costs of a conventional system. In detail, a directional valve is used to control movement and three electro-hydraulic poppet valves are integrated to adjust the flow rate at the inlet and outlet ports of the boom cylinder. In addition, a control strategy based on the coordination between the speed of the pump and the opening area of the spool valve is designed to improve the performance of the system. Specifically, the valves are controlled based on the strategy that the meter-in valve is opened fully to reduce throttling losses and that the meter-out valve is controlled to reduce leakage. The speed of the pump is adjusted according to the feedback position signal. To demonstrate the effectiveness of the new configuration, a real test bench of the boom system was built under laboratory conditions. From the experimental results, the new independent metering valve system not only works with a high tracking precision, but it also reduces energy consumption. Compared with a conventional independent metering system, the fuel economy of the proposed structure can achieve a reduction of approximately 6.5%.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Wenting Liu ◽  
Qingliang Zeng ◽  
Lirong Wan ◽  
Jinxia Liu ◽  
Hanzheng Dai

Although some reliability importance measures and maintenance policies for mechanical products exist in literature, they are rarely investigated with reference to weakest component identification in the design stage and preventive maintenance interval during the life cycle. This paper is mainly study reliability importance measures considering performance and costs (RIMPC) of maintenance and downtime of the mechanical hydraulic system (MHS) for hydraulic excavators (HE) with energy regeneration and recovery system (ERRS) and suggests the scheduled maintenance interval for key components and the system itself based on the reliability R i t . In the research, the required failure data for reliability analysis is collected from maintenance crews and users over three years of a certain type of hydraulic excavators. Minitab is used for probable distribution estimation of the mechanical hydraulic system failure times, and the model is verified to obey Weibull distribution. RIMPC is calculated by multiplying the reliability R i t and weighting factor W i and then compared with other classical importance measures. The purpose of this paper is to identify the weakest component for MHS in the design stage and to make appropriate maintenance strategies which help to maintain a high reliability level for MHS. The proposed method also provides the scientific maintenance suggestion for improving the MHS reliability of the HE reasonably, which is efficient, profitable, and organized.


2022 ◽  
Author(s):  
Sergey Markov ◽  
Maxim Tyulenev

Abstract Since the end of the last century, a significant number of hydraulic excavators have arrived on Russian quarries. Most of these excavators are equipped with backhoe operating equipment. The widespread use of such excavators in open-pit mining proves their exceptional efficiency. However, at the same time there is no clear understanding of the conditions under which a hydraulic excavator will be most effective: a theory of the face block of hydraulic shovels has not yet been developed. The available scientific studies are limited to determining the rational height of the excavation layer for efficient operation. If to take the quality of preparation of rock mass and the scheme of its loading into dump trucks as external parameters, i.e. not depending on the features of excavator design, then the position of its working equipment relative to the rock block has a decisive influence on operation of the hydraulic drive and fuel consumption. This is due to the changing value of digging force at various points of the bucket teeth position in the range of their possible positions at constant power of the hydraulic drive. Thus, application of optimal position of hydraulic excavator working equipment elements (bucket, arm, and boom) relative to the rotary platform and the rock massive during the digging cycle allows both to reduce fuel consumption and to increase the digging force. The application of the developed methodology is promising in terms of improving the energy efficiency of both individual excavation and loading units and the enterprise as a whole.


2022 ◽  
Vol 354 ◽  
pp. 00064
Author(s):  
Bogdan Ioan Marc ◽  
Alexandra (Soica) Stanimriescu ◽  
Angela Egri

This paper studies the Roșia Jiu quarry area in Romania. This research highlights the working method of hydraulic excavators and the values of particles released into the atmosphere by them. Improving technological equipment not only helps build a better world, but also restores and preserves the environment. The measurements were made during 2020, using DSM501A sensors, which were located at four points in the quarry, namely in the north, southeast and west of the quarry.


Author(s):  
Pavel G. Bezkorovayny ◽  
Viktor S. Shestakov ◽  
Valeri I. Nesterov
Keyword(s):  

Author(s):  
Valeria V. Makarova ◽  
Yuliya A. Lagunova ◽  
Roman A. Kovyazin ◽  
Valeri I. Nesterov

2021 ◽  
Vol 33 (6) ◽  
pp. 1248-1254
Author(s):  
Takamichi Yuasa ◽  
◽  
Masato Ishikawa ◽  
Satoshi Ogawa

Hydraulic excavators are one type of construction equipment used in various construction sites worldwide, and their usage and scale are diverse. Generally, the work efficiency of a hydraulic excavator largely depends on human operation skills. If we can comprehend the experienced operation skills and utilize them for manual control assist, semi-automatic or automatic remote control, it would improve its work efficiency and suppress personnel costs, reduce the operator’s workload, and improve his/her safety. In this study, we propose a methodology to design efficient machine trajectories based on mathematical models and numerical optimization, focusing on ground-level excavation as a dominant task. First, we express its excavation trajectory using four parameters and assume the models for the amount of excavated soil and the reaction force based on our previous experiments. Next, we combine these models with a geometrical model for the hydraulic excavating machine. We then assign the amount of soil to a performance index preferably to be maximized and the amount of work to a cost index preferably to be minimized, both in the form of functions of the trajectory parameters, resulting in an optimization problem that trades them off. In particular, we formulate (1) a multi-objective optimization problem maximizing a weighted linear combination of the amount of soil and the amount of work as an objective function, and (2) a single-objective optimization problem maximizing the amount of soil under a given upper bound on the amount of work, so that we can solve these optimization problems using the genetic algorithm (GA). Finally, we conclude this paper by suggesting our notice on design methodology and discussing how we should provide the optimization method as mentioned above to the users who operate hydraulic excavators.


2021 ◽  
pp. 095745652110557
Author(s):  
Yong Chen ◽  
Mian Jiang ◽  
Daoyong Wang ◽  
Kuanfang He

The mass variances of materials in buckets and the movements of excavation arms greatly impact powertrain vibration transmissibility in hydraulic excavators under working conditions. If the influence of mass variation among bucket contents and excavation arm motions on vibration transmissibility is not considered, then only limited improvements can be made to vibration isolation performance. In this paper, vibration transmissibility suppression for hydraulic excavators operating under working conditions were studied via multi-objective optimization for stiffness coefficients of suspension elements (SEs). First, the rigid-flexible coupling model of a hydraulic excavator with a flexible base was built using ADAMS software. In the model, the stiffness coefficients of the SEs were the targeted variables with constrained conditions, while the multi-objectives for optimization were the vibration transmissibility and energy decoupling rates of the powertrain. Vibration isolation transmissibility (VIT) of the mounting system was compared between situations with non-optimized and optimized stiffness coefficients. Finally, the amplitude changes of the resultant SE support forces were used to illustrate the effects of powertrain vibration transmissibility suppression. We found that the average value of VITs increases significantly during the optimization process for the stiffness coefficients of SEs, which indicates that the mounting system has better vibration isolation performance. The smaller amplitudes of the resultant support force illustrate the improvements to the performance of vibration transmissibility suppression of the powertrain via the optimization process.


Sign in / Sign up

Export Citation Format

Share Document