Active Shutters of the Internal Combustion Engine Cooling System of a Passenger Car

Author(s):  
A.P. Petrov ◽  
S.N. Bannikov

The practice of using active shutters in the modern automotive industry is analyzed in this work, and the high efficiency of such systems is emphasized. It is also noted that by using active shutters the aerodynamic drag of the car can be reduced by 6–10 %. The reduction in the engine’s warm-up time provides faster heating of the car interior. All this helps to save fuel and reduce emissions of harmful substances into the atmosphere. The possibility of utilizing the radiator’s active shutters with two autonomously controlled sections is considered. CFD numerical modelling is used to conduct the research, and the potential of the proposed active shutters design is determined. The research has shown that besides the high efficiency, the proposed shutters system has a simpler design and reliability associated with several factors. Due to the vertical arrangement of the slats, the shutters do not reduce the efficiency of the engine’s cooling system and the air conditioning system in the passenger compartment. Unlike in the existing designs, in the proposed system the cooling air supply is regulated by separate opening or closing of two independent sections.

Author(s):  
T. Mitchell ◽  
M. Salah ◽  
J. Wagner ◽  
D. Dawson

The automotive cooling system has unrealized potential to improve internal combustion engine performance through enhanced coolant temperature control and reduced parasitic losses. Advanced automotive thermal management systems use controllable actuators (e.g., smart thermostat valve, variable speed water pump, and electric radiator fan) that must work in harmony to control engine temperature. One important area of cooling system operation is warm-up, during which fluid flow is regulated between the bypass and radiator loops. A fundamental question arises regarding the usefulness of the common thermostat valve. In this paper, four different thermostat configurations were analyzed, with accompanying linear and nonlinear control algorithms, to investigate warm-up behaviors and thermostat valve operations. The configurations considered include factory, two-way valve, three-way valve, and no valve. Representative experimental testing was conducted on a steam-based thermal bench to examine the effectiveness of each valve configuration in the engine cooling system. The results clearly demonstrate that the three-way valve has the best performance as noted by the excellent warm-up time, temperature tracking, and cooling system power consumption.


Author(s):  
Lukas P. Barchewitz ◽  
Joerg R. Seume

To cover the increasing demand of on-board electrical power and for further reduction of emissions, the conventional auxiliary power unit (APU) shall be replaced by a fuel cell system. The main components are a compressor-turbine unit, a kerosene reformer, and the fuel cell. Polymer exchange membrane fuel cells (PEM-FC) are favoured because of their currently advanced level of development. During in-flight operation, the inlet conditions of the PEM-FC system must be kept constant in order to avoid mechanical and thermal damage of the membrane and to ensure low levels of pressure fluctuations in the reformer section. A centrifugal compressor is chosen for pressurization of the system. The advantages of turbomachinery are low specific weight, high efficiency, and good controllability by inlet guide vanes and/or adjustable diffuser vanes. To drive the compressor, a radial turbine is used so that the air supply system resembles the turbocharger for a combustion engine (Fig. 1). A steady state thermodynamic evaluation of the entire system is carried out to identify an optimal system configuration that covers the large range of pressure, temperature, and humidity of ground operation of the aircraft in various regions on the earth as well as take-off, cruise, and landing. A catalytic combustion chamber is located between the PEM-FC and the radial turbine. In this combustion chamber, the hydrogen which is not used in the fuel cell is used to raise the turbine inlet temperature (TIT) and thus the mechanical power delivered by the turbine. To overcome an additional pressure loss of the reformer section, which occurs in the anode stream, an additional low-pressure-ratio compressor is used. The result is a highly thermally integrated PEM-FC system with three centrifugal turbomachines.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Mirko Micio ◽  
Antonio Andreini

Heat transfer and pressure drop for a representative part of a turbine active cooling system were numerically investigated by means of an in-house code. This code has been developed in the framework of an internal research program and has been validated by experiments and CFD. The analysed system represents the classical open bird cage arrangement that consists of an air supply pipe with a control valve and the present system with a collector box and pipes, which distribute cooling air in circumferential direction of the casing. The cooling air leaves the ACC system through small holes at the bottom of the tubes. These tubes extend at about 180° around the casing and may involve a huge number of impinging holes; as a consequence, the impinging jets mass flow rate may vary considerably along the feeding manifold with a direct impact on the achievable heat transfer levels. This study focuses on the performance, in terms of heat transfer coefficient and pressure drop, of several impinging tube geometries. As a result of this analysis, several design solutions have been compared and discussed.


2021 ◽  
Vol 1 (1) ◽  
pp. 51-56
Author(s):  
N.A. Ivanov ◽  
◽  
D.V. Otmakhov ◽  
S.P. Zakharychev ◽  
O.V. Kazannikov ◽  
...  

The main topic of the article is the development of an effective design for a pre-starting heating system for an internal combustion engine for conditions of limited power supply. The work to im-prove the design of light wheeled all-terrain vehicles on low pressure pneumatics is done at Pacific National University. Prototypes of light wheeled off-road vehicles are used mainly in agriculture and for forestry production. There are prerequisites for their use in oil and gas fields in the Far North conditions. This vehicle is operated all year round, in the absence of power supply, it is stored in the open air, so the problem of starting a cold engine is quite important, and the topic of creating a design for a pre-starting heating system for an internal combustion engine under conditions of limited or com-plete absence of power supply is relevant. The purpose of the work is to develop and study the efficiency of the pre-starting heating system for an internal combustion engine with liquid cooling for conditions of limited power supply. Our own design of the cooling system with a pre-starting heating function based on a gasoline burner was developed. To assess the efficiency of the engine warm-up process, the circuit was as-sembled on a light wheeled all-terrain vehicle. The experimental studies were carried out to deter-mine the regularity of changes in the temperature of the engine coolant during pre-starting heating at different ambient temperatures. The results of the experiment indicate the high efficiency of the developed system based on a gasoline burner. The average heating rate of the engine coolant during the warm-up process was 2.1 - 2.8 оС per minute, which indicates an intensive pace of pre-starting heating.


2021 ◽  

The article presents a study and modification of the cooling system of a KAMAZ R6 in-line diesel engine using a heat exchanger of the combustion products recirculation system in the Simcenter AMESim one-dimensional simulation software. In the course of the research, the problems of engine overheating when using a heat exchanger of the combustion products recirculation system were identified, and possible solutions were proposed and investigated to optimize the temperature level of the coolant in the engine cooling system. Keywords one-dimensional modeling, 1D modeling, ICE, internal combustion engine, heat exchange, cooling system, CO, heat exchanger, heat exchanger, TA


Sign in / Sign up

Export Citation Format

Share Document