Automatic Unloading Liquid Rocket Engine Fuel Feed System Booster Pump Radial Thrust Bearings from Axial Force

Author(s):  
S.F. Timushev ◽  
A.A. Frolov

Increasing the suction capacity, efficiency and energy parameters of high-speed pumps is an important task in the development of power systems in the aerospace industry, as well as in their application in energy and oil production. With improved cavitation properties, the pumps can operate at a higher shaft speed, and at its given value - with lower cavitation reserves, i.e. at a reduced inlet pressure. When the shaft speed increases, the pump weight and overall dimensions decrease. To increase the anti-cavitation qualities of pumps in the power system, auxiliary (booster) pumping units are used, creating the pressure necessary for the cavitation-free operation of high-pressure and high-speed main pumps of the engine fuel supply system. In accordance with its purpose, the booster pump must provide the required supply pressure of the specified flow rate at the lowest possible liquid pressure at the inlet. At the same time, the efficiency of the booster pump unit should be maximum, and the overall dimensions and weight should be minimal. The last two characteristics predetermine the maximum possible number of revolutions of the pump shaft. Ensuring the operability of the ball-bearing supports of the fuel supply units is one of the most important and complex tasks in the development of modern and promising liquid rocket engines (LRE), especially reusable ones. This task has always been one of the priorities in the fine-tuning the fuel feed units of such engines. The article proposes a method for calculating and controlling the unloading liquid rocket engine booster pump radial thrust bearings from axial force. The method can be applied in the entire range of liquid rocket engine calculations. The further development of this work will be mathematical modeling of the operation of the booster pump automatic axial force unloading.

2013 ◽  
Vol 26 (1) ◽  
pp. 169-175 ◽  
Author(s):  
Seong Min Jeon ◽  
Hyun Duck Kwak ◽  
Suk Hwan Yoon ◽  
Jinhan Kim

2011 ◽  
Vol 320 ◽  
pp. 196-201
Author(s):  
Fei Tang ◽  
Li Jia Wen

Rotating cavitation is one of the most important problems in the development of modern high performance rocket pump inducers. In this paper, a numerical simulation of rotating cavitation phenomenon in a 2D blade cascade of liquid rocket engine inducer was carried out using a mixture model based on Rayleigh-Plesset equation. The purpose is to investigate the characterization of rotating cavitation in a high speed inducer. The results show that when sub-synchronous rotating cavitation occurs, the speed for the length of the blade surface cavitation is lower than the speed frequency of rotation shaft with the same direction. The external aspect is that the pressure at the upstream of blades changes synchronous. Thus, the generation of sub-synchronous rotating cavitation is closely related to the changes of flow angel which caused by the flow fluctuations. Hence, elimination of the flow rate redistribution among the flow channel can effectively suppress the occurrence of this phenomenon.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Baofeng Yang ◽  
Bin Li ◽  
Hui Chen ◽  
Zhanyi Liu ◽  
Kaifu Xu

The clocking positions between the inducer and the impeller have a certain impact on the performance of the high-speed centrifugal pump, which however, is often ignored by designers. In the present study, three-dimensional numerical simulation based on detached eddy simulation method is adopted to evaluate the influence of this clocking effect on unsteady pressure pulsations in a full-scale liquid rocket engine oxygen turbopump. A new omega vortex identification method is introduced to clarify the internal correlation between unsteady flow structures and pressure pulsations and to shed comprehensive light on the formation mechanism of this clocking effect. Results show that the clocking effect has little influence on the unsteady pressure field in inducer passages while it significantly affects the rotor–stator interaction (RSI) effect leading to the alteration of the pressure spectra in RSI region, diffuser and volute diffuser pipe. The components at the inducer blade passing frequency in the pressure spectra are remarkably suppressed and the total pressure pulsation energy in these regions is decreased by an average of 13.94%, 12.94%, and 34.65%, respectively, when the inducer blade trailing edges are located in the middle of two adjacent impeller blades. The vortex analysis in the specific region reveals that the pressure pulsations in RSI region and the downstream regions are closely associated with the unsteady vortex shedding from the diffuser blades and the formation of the clocking effect is precisely due to different processes of the periodic vortex shedding from the diffuser blade pressure surfaces.


2014 ◽  
Vol 66 (2) ◽  
pp. 314-321 ◽  
Author(s):  
Zhang Guo-yuan ◽  
Wei-gang Zhao ◽  
Yan Xiu Tian

Purpose – A new type of hydrostatic and hydrodynamic non-contacting face seals has been designed to meet the requirements of lower leakage, longer life and more repeatedly start and stop on shaft seals raised by liquid rocket engine turbopumps. And an experimental study on the performance of the face seal in the actual liquid oxygen turbopump was completed where low-viscosity water was selected as the seal fluid for the sake of safety. The paper aims to discuss these issues. Design/methodology/approach – Different performances of face seals under preset conditions were obtained by repeatedly running tests, and the main performance parameters encompass leakage, fluid film pressure between the faces, operating power, face temperature, and so on. Findings – The results indicate that the designed face seal has a smaller amount of leakage, with a minimum value of 3 ml/s. Furthermore, the designed face seal has been proved to demand lower operating power. Since its operating power changes slightly with different sealed fluid pressures, the new seal can be deployed in the harsh working condition with high pressure or with high speed (greater than 20,000 rpm). However, one proviso is that when liquid is employed as the seal fluid, the groove depth should be relatively deeper (greater than 10 μm). Research limitations/implications – In response to future engineering requirements, study on the controllable spiral-groove face seals to improve the current design is being conducted. Originality/value – The advancement of such non-contacting face seals proffers important insights to the design of turbo-pump shaft seal in a new generation of liquid rocket engine with regard to the requirement of frequent start and stop as well as long life on it.


2020 ◽  
Vol 57 (2) ◽  
pp. 391-397
Author(s):  
S. B. Verma ◽  
Oskar Haidn

Sign in / Sign up

Export Citation Format

Share Document