Conducting Medium Electrical Conductivity at High Current Density

Author(s):  
S.L. Timchenko ◽  
N.A. Zadorozhny

The experimental research example of electrical characteristics of structurally heterogeneous thinlayer conductors (nickel, copper) at high current density (108--109 А/m2) is shown. This current density in conditions of the samples intensive cooling is sufficient for the process of irreversible, nonthermally activated deformation. The experiment results show that the conducting medium at high current density has essential nonlinearities expressed in nonlinear dependence of the samples electrical resistance from current density. With repeated current treatments of the samples the conductors' electrical resistivity decreases. The number of defects removed from the volume of material as a result of nickel foil treatment by electric current is estimated. It is shown that under conditions of highdensity direct electric current flow in microvolumes of homogeneous and inhomogeneous conducting media a volume charge can appear. The appearance of the volume charge in a conducting medium can be caused by interaction forces during the motion of electrons and ions. Due to the interaction forces between ions and electrons of basic material and impurities, additional local ionization occurs which is realized in nano-volumes of a conductor. In the case of heterogeneous medium, the volume charge depends on the nature of the specific conductivity distribution. In a homogeneous conductor the volume charge is proportional to the square of the current density in the sample

Author(s):  
Kazuhiro Fujisaki ◽  
Hikaru Narita ◽  
Kazuhiko Sasagawa

The high current density induces electromigration (EM) in metal lines used for electric wirings in integrated circuits. The growth of voids formed by EM in the line material leads to the line failure. Recently, multilevel interconnections are widely used in the circuit in electronics devices and MEMS. Metal lines aligned on upper and lower layer are connecting through the vias in the multilevel interconnections. The reservoir structure is often constructed in the line structure to prevent the EM damages. There is a threshold current density relating to the EM damage of the lines in the interconnection with vias. It is important to evaluate the threshold value for determination of an allowable electric current of the line. In this study, a numerical simulation technique for analyzing the atomic density distributions in the line material under high current density was used to evaluate the EM risks of metal lines in the several cases of interconnect tree structure with reservoir. The thresholds of current density leading to EM damage were calculated in the simulations considering the reservoir locations and pattern of electric current flow in the tree.


Author(s):  
Yingchun Zhang ◽  
Changsheng Cao ◽  
Xintao Wu ◽  
Qi-Long Zhu

Bismuth (Bi)-based nanomaterials are considered as the promising electrocatalysts for electrocatalytic CO2 reduction reaction (CO2RR), but it is challenging to achieve high current density and selectivity in a wide potential...


Author(s):  
Xia He ◽  
Fei Yan ◽  
Mingyuan Gao ◽  
Yunjing Shi ◽  
Guanglong Ge ◽  
...  

Author(s):  
Anand Abhishek ◽  
Niraj Kumar ◽  
Udit Narayan Pal ◽  
Bhim Singh ◽  
S. A. Akbar

Author(s):  
Alan M. Cook ◽  
Edward L. Wright ◽  
Khanh T. Nguyen ◽  
Colin D. Joye ◽  
John C. Rodgers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document