Three-dimensional porous copper-decorated bismuth-based nanofoam for boosting electrochemical reduction of CO2 to formate

Author(s):  
Yingchun Zhang ◽  
Changsheng Cao ◽  
Xintao Wu ◽  
Qi-Long Zhu

Bismuth (Bi)-based nanomaterials are considered as the promising electrocatalysts for electrocatalytic CO2 reduction reaction (CO2RR), but it is challenging to achieve high current density and selectivity in a wide potential...

2019 ◽  
Author(s):  
Sahithi Ananthaneni ◽  
Rees Rankin

<div>Electrochemical reduction of CO2 to useful chemical and fuels in an energy efficient way is currently an expensive and inefficient process. Recently, low-cost transition metal-carbides (TMCs) are proven to exhibit similar electronic structure similarities to Platinum-Group-Metal (PGM) catalysts and hence can be good substitutes for some important reduction reactions. In this work, we test graphenesupported WC (Tungsten Carbide) nanocluster as an electrocatalyst for the CO2 reduction reaction. Specifically, we perform DFT studies to understand various possible reaction mechanisms and determine the lowest thermodynamic energy landscape of CO2 reduction to various products such as CO, HCOOH, CH3OH, and CH4. This in-depth study of reaction energetics could lead to improvements and develop more efficient electrocatalysts for CO2 reduction.<br></div>


Author(s):  
Rajasekaran Elakkiya ◽  
Govindhan Maduraiveeran

Design of high-performance and Earth-abundant electrocatalysts for electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) into fuels and value-added chemicals offers an emergent pathway for environment and energy sustainable concerns. Herein,...


Nano Energy ◽  
2020 ◽  
Vol 77 ◽  
pp. 105296 ◽  
Author(s):  
Li-Xia Liu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Jian-Rong Zhang ◽  
Li-Ping Jiang ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 604
Author(s):  
Sahithi Ananthaneni ◽  
Zachery Smith ◽  
Rees B. Rankin

Electrochemical reduction of CO2 to useful chemical and fuels in an energy efficient way is currently an expensive and inefficient process. Recently, low-cost transition metal-carbides (TMCs) have been proven to exhibit similar electronic structure similarities to Platinum-Group-Metal (PGM) catalysts and hence, can be good substitutes for some important reduction reactions. In this work, we test graphene-supported WC (Tungsten Carbide) nanoclusters as an electrocatalyst for the CO2 reduction reaction. Specifically, we perform density functional theory (DFT) studies to understand various possible reaction mechanisms and determine the lowest thermodynamic energy landscape of CO2 reduction to various products, such as CO, HCOOH, CH3OH, and CH4. This in-depth study of reaction energetics could lead to improvements and development of more efficient electrocatalysts for CO2 reduction.


2021 ◽  
Author(s):  
Shima Alinejad ◽  
Jonathan Quinson ◽  
Yao Li ◽  
Ying Kong ◽  
Sven Reichenberger ◽  
...  

The lack of a robust and standardized experimental test bed to investigate the performance of catalyst materials for the electrochemical CO2 reduction reaction (ECO2RR) is one of the major challenges in this field of research. To best reproduce and mimic commercially relevant conditions for catalyst screening and testing, gas diffusion electrode (GDE) setups attract a rising attention as an alternative to conventional aqueous-based setups such as the H-cell configuration. In particular a zero-gap design shows promising features for upscaling to the commercial scale. In this study, we develop further our recently introduced zero-gap GDE setup for the CO2RR using an Au electrocatalyst as model system and identify/report the key experimental parameters to control in the catalyst layer preparation in order to optimize the activity and selectivity of the catalyst.


2020 ◽  
Vol 10 (10) ◽  
pp. 3487 ◽  
Author(s):  
Changyeon Kim ◽  
Seokhoon Choi ◽  
Min-Ju Choi ◽  
Sol A Lee ◽  
Sang Hyun Ahn ◽  
...  

The photoelectrochemical reduction of CO2 to syngas that is used for many practical applications has been emerging as a promising technique to relieve the increase of CO2 in the atmosphere. Si has been considered to be one of the most promising materials for photoelectrodes, but the integration of electrocatalysts is essential for the photoelectrochemical reduction of CO2 using Si. We report an enhancement of catalytic activity for CO2 reduction reaction by Ag catalysts of tuned morphology, active sites, and electronic structure through reducing anodic treatment. Our proposed photocathode structure, a SiO2 patterned p-Si photocathode with these reduced Ag catalysts, that was fabricated using electron-beam deposition and electrodeposition methods, provides a low onset-potential of −0.16 V vs. the reversible hydrogen electrode (RHE), a large saturated photocurrent density of −9 mA/cm2 at −1.23 V vs. RHE, and faradaic efficiency for CO of 47% at −0.6 V vs. RHE. This photocathode can produce syngas in the ratio from 1:1 to 1:3, which is an appropriate proportion for practical application. This work presents a new approach for designing photocathodes with a balanced catalytic activity and light absorption to improve the photoelectrochemical application for not only CO2 reduction reaction, but also water splitting or N2 reduction reaction.


2020 ◽  
Vol MA2020-01 (36) ◽  
pp. 1497-1497
Author(s):  
Brian Seger ◽  
Ming Ma ◽  
Ezra L Clark ◽  
Kasper Therkildsen ◽  
Ib Chorkendorff

2010 ◽  
Vol 1270 ◽  
Author(s):  
M. Uno ◽  
Yuri Hirose ◽  
Kengo Nakayama ◽  
Takafumi Uemura ◽  
Yasuhiro Nakazawa ◽  
...  

AbstractThree-dimensional organic field-effect transistors with multiple sub-micrometer channels are developed to exhibit high current density and high switching speed. The sub-micrometer channels are arranged perpendicularly to substrates and are defined by the height of a multi-columnar structure fabricated without using electron-beam-lithography technique. For devices with dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, extremely high current density exceeding 10 A/cm2 and fast switching within 200 ns are realized with an on-off ratio of 105. The unprecedented performance is beyond general requirements to control organic light-emitting diodes, so that even more extensive applications to higher-speed active-matrices and display-driving circuits can be realized with organic semiconductors.


Sign in / Sign up

Export Citation Format

Share Document