Innovative methods for obtaining artificial roughness on the surfaces of heat-loaded parts of the liquid rocket engine combustion chambers

Author(s):  
A.Yu. Ryazantsev ◽  
S.S. Yukhnevich ◽  
A.A. Shirokozhukhova

The paper shows the applications of combined processing in the manufacture of parts and assembly units of liquid rocket engines in the aerospace industry. The most effective methods of obtaining artificial roughness on the surfaces of special equipment products are considered. Empirical studies of changes in the physical and mechanical properties of the material are performed using various methods of combined processing. Qualitative and quantitative relationships between the hydraulic characteristics of the rocket engine combustion chamber manufactured using the combined method, and the quality of the surface layer of the product are described and formalized. The analysis of modern processing methods is performed, and the latest methods for obtaining artificial roughness on the surfaces of rocket engine parts are presented. The relevance and need for the use of high-end technology in obtaining surface layers of products included in the structure of the combustion chamber of liquid rocket engines are proved. The results obtained allow significant expanding the technological capabilities of production, as well as appreciable improving the technical characteristics of special equipment products in the aerospace industry.

Author(s):  
D.A. Zhuykov ◽  
A.A. Zuev ◽  
M.I. Tolstopyatov

Designing more sophisticated contemporary liquid rocket engines requires a precise understanding of the hydrodynamics in the blading sections of the pressurisation station, which is most often a turbopump. Friction loss in blade passages and outlets forms a significant proportion of all losses. The paper shows that it is necessary to account for the initial region of hydrodynamically unbalanced flow in the boundary layer, which is most characteristic of relatively short passages in blading sections of liquid rocket engine turbopumps. We performed the analysis required to select friction drag laws for components of pressurisation station blading sections. We considered and proposed a method for numerically integrating a system of equations to determine the variation in characteristic thickness of a spatial boundary layer and friction loss, accounting for the inertial component of the flow core velocity, depending on which flow modes occur in the components of pressurisation station blading sections in a liquid rocket engine. We show that it is necessary to correctly select the friction laws and to take the initial region into account so as to precisely determine the power parameters


2021 ◽  
Vol 1037 ◽  
pp. 516-521
Author(s):  
Vladislav Smolentsev ◽  
Nikolay Nenahov ◽  
Natalia Potashnikova

The heat-loaded part of the combustion chamber of a liquid rocket engine are Considered. The proposed coating has several layers: an internal metal coating that contacts the part or substrate, and an external coating made of a mixture of ceramic granules and metal powder. At the same time, to obtain the initial surface for coating with the required surface layer roughness, it is proposed to use the method of sand blasting. The article analyzes possible mechanisms of material formation for "base-coating" transition zones, as well as the influence of their chemical composition on the adhesive strength of layers.. The choice of brand and combination of materials used for coating is justified. Technological modes that have been tested in production conditions when applying heat-resistant coatings to parts of modern rocket engines are proposed. The influence of technological parameters of the initial surface preparation process and the geometry of the resulting micro-relief of the substrate on the adhesion characteristics of a multilayer coating made of heat-protective materials operating in the high-temperature zone of the combustion chamber of liquid rocket engines is revealed.


2015 ◽  
Vol 81 (826) ◽  
pp. 14-00674-14-00674
Author(s):  
Miki NISHIMOTO ◽  
Hideyo NEGISHI ◽  
Shinobu YOSHIMURA ◽  
Naoto KASAHARA ◽  
Hiroshi AKIBA ◽  
...  

Author(s):  
V.P. Aleksandrenkov ◽  
K.E. Kovalev ◽  
D.A. Yagodnikov

The paper presents a computational analysis of coolant distribution in the cooling channel of a liquid rocket engine combustion chamber, performed in order to develop a set of practical guidelines towards increasing efficiency of a cooling system featuring an extremely high degree of ribbing. We created a three-dimensional mathematical model comprising a closed system of hydrodynamic equations as well as initial and boundary conditions for an element of the liquid rocket engine chamber we modelled, the chamber featuring longitudinal cooling channel arrangement manufactured via additive technology. We computed velocity and pressure fields in characteristic cooling channel regions for various levels of coolant mass flow rate, which confirmed the feasibility of the layout proposed in terms of uniform coolant distribution in the cooling channel of the liquid rocket engine modelled. We obtained the friction loss ξ as a function of coolant mass flow rate and particle size of the powder used in the additive technology to manufacture the combustion chamber wall and cooling channel.


Sign in / Sign up

Export Citation Format

Share Document