scholarly journals Identification and description of genes with a high mutation frequency in vagal paragangliomas

Genetics ◽  
1984 ◽  
Vol 108 (4) ◽  
pp. 859-877
Author(s):  
D G Moerman ◽  
R H Waterston

ABSTRACT This paper describes a mutator system in the nematode Caenorhabditis elegans var. Bergerac for the gene unc-22. Of nine C. elegans and two C. briggsae strains tested only the Bergerac BO strain yielded mutant animals at a high frequency and the unc-22 IV gene is a preferred mutational target. The forward spontaneous mutation frequency at the unc-22 locus in Bergerac BO is about 1 × 10-4, and most of these spontaneous unc-22 mutations revert at frequencies between 2 × 10-3 and 2 × 10-4. Both the forward mutation frequency and the reversion frequency are sensitive to genetic background. Spontaneous unc-22 mutations derived in a Bergerac background and placed in a primarily Bristol background revert at frequencies of <10-6. When reintroduced into a Bergerac/Bristol hybrid background the mutations once again become unstable. The mutator activity could not be localized to a discrete site in the Bergerac genome. Nor did mutator activity require the Bergerac unc-22 gene as a target since the Bristol unc-22 homolog placed in a Bergerac background also showed high mutation frequency. Intragenic mapping of two spontaneous unc-22 alleles, st136 and st137, place both mutations in the central region of the known unc-22 map. However, these mutations probably recombine with one another, suggesting that the unstable mutations can occur in more than one site in unc-22. Examination of the phenotypic effect of these mutations on muscle structure indicates that they are less severe in their effect than a known amber allele. We suggest that this mutator system is polygenic and dispersed over the nematode genome and could represent activity of the transposable element Tc1.


Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 844 ◽  
Author(s):  
Larissa R. Andrade ◽  
Amanda M. Caceres ◽  
Anelize S. Trecenti ◽  
Claudia Valeria S. Brandão ◽  
Micaella G. Gandolfi ◽  
...  

Progressive retinal atrophy (PRA) due to the c.5G>A mutation in the progressive rod–cone degeneration (PRCD) gene is an important genetic disease in English cocker spaniel (ECS) dogs. Because the prevalence of this disease has not been verified in Brazil, this study aimed to evaluate the allele frequency of the c.5G>A mutation in the PRCD gene. Purified DNA from 220 ECS dogs was used for genotyping, of which 131 were registered from 18 different kennels and 89 were unregistered. A clinical eye examination was performed in 28 of the genotyped animals; 10 were homozygous mutants. DNA fragments containing the mutation region were amplified by PCR and subjected to direct genomic sequencing. The prcd-PRA allele frequency was 25.5%. Among the registered dogs, the allele frequency was 14.9%; among the dogs with no history of registration, the allele frequency was 41%. Visual impairment was observed in 80% (8/10) of the homozygous mutant animals that underwent clinical eye examination. The high mutation frequency found in this study emphasizes the importance of genotyping ECSs as an early diagnostic test, especially as part of an informed breeding program, to avoid clinical cases of PRA.


2015 ◽  
Vol 89 (13) ◽  
pp. 6817-6823 ◽  
Author(s):  
Justin S. Pita ◽  
Viktoriya Morris ◽  
Marilyn J. Roossinck

ABSTRACTRecentin plantastudies have shown that strains Fny and LS ofCucumber mosaic virus(CMV) display differential genetic diversities, Fny and LS having higher and lower mutation frequencies, respectively (J. S. Pita and M. J. Roossinck, J Virol 87:790–797, 2012http://dx.doi.org/10.1128/JVI.01891-12). In this article, we show that these virus strains have differential recombination frequencies as well. However, the high-diversity Fny strain is a low-recombination virus, whereas the very-low-diversity LS strain is instead a high-recombination virus. Unlike the mutation frequency that was determined by both RNAs 1 and 2, the control elements of recombination frequency reside predominantly within RNA 2, specifically within the 2a gene.IMPORTANCERecombination is an important mechanism in virus evolution that can lead to increased or decreased variation and is a major player in virus speciation events that can lead to emerging viruses. Although viral genomes show very frequent evidence of recombination, details of the mechanism involved in these events are still poorly understood. We show here that the reciprocal effects of high mutation frequency and low recombination frequency (andvice versa) involve the RNA-dependent RNA polymerase of the virus, and we speculate that these evolutionary events are related to differences in processivity for two strains of the same virus.


2004 ◽  
Vol 166 (7) ◽  
pp. 1055-1067 ◽  
Author(s):  
Paola Fabrizio ◽  
Luisa Battistella ◽  
Raffaello Vardavas ◽  
Cristina Gattazzo ◽  
Lee-Loung Liou ◽  
...  

Aging is believed to be a nonadaptive process that escapes the force of natural selection. Here, we challenge this dogma by showing that yeast laboratory strains and strains isolated from grapes undergo an age- and pH-dependent death with features of mammalian programmed cell death (apoptosis). After 90–99% of the population dies, a small mutant subpopulation uses the nutrients released by dead cells to grow. This adaptive regrowth is inversely correlated with protection against superoxide toxicity and life span and is associated with elevated age-dependent release of nutrients and increased mutation frequency. Computational simulations confirm that premature aging together with a relatively high mutation frequency can result in a major advantage in adaptation to changing environments. These results suggest that under conditions that model natural environments, yeast organisms undergo an altruistic and premature aging and death program, mediated in part by superoxide. The role of similar pathways in the regulation of longevity in organisms ranging from yeast to mice raises the possibility that mammals may also undergo programmed aging.


2019 ◽  
Vol 2 (4) ◽  
pp. 213-220
Author(s):  
Edward D Zhang ◽  
Meixia Zhang ◽  
Gen Li ◽  
Charlotte L Zhang ◽  
Zhihuan Li ◽  
...  

Abstract Uveal melanoma is the most common intraocular cancer in the adult eye. R183 and Q209 were found to be mutational hotspots in exon 4 and exon 5 of GNAQ and GNA11 in Caucasians. However, only a few studies have reported somatic mutations in GNAQ or GNA11 in uveal melanoma in Chinese. We extracted somatic DNA from paraffin-embedded biopsies of 63 Chinese uveal melanoma samples and sequenced the entire coding regions of exons 4 and 5 in GNAQ and GNA11. The results showed that 33% of Chinese uveal melanoma samples carried Q209 mutations while none had R183 mutation in GNAQ or GNA11. In addition, seven novel missense somatic mutations in GNAQ (Y192C, F194L, P170S, D236N, L232F, V230A, and M227I) and four novel missense somatic mutations in GNA11 (R166C, I200T, S225F, and V206M) were found in our study. The high mutation frequency of Q209 and the novel missense mutations detected in this study suggest that GNAQ and GNA11 are common targets for somatic mutations in Chinese uveal melanoma.


1984 ◽  
Vol 4 (10) ◽  
pp. 1951-1960 ◽  
Author(s):  
J S Lebkowski ◽  
R B DuBridge ◽  
E A Antell ◽  
K S Greisen ◽  
M P Calos

Papovavirus-based shuttle vectors containing the bacterial lacI gene were used to show that a mutation frequency in the range of 1% occurs in lacI when such vectors are transfected into COS7 and CV-1 simian cells, NIH 3T3, 3T6, L, and C127 mouse cells, and human 293 and HeLa cells. This frequency is approximately four orders of magnitude higher than the spontaneous mutation frequency in either mammalian or bacterial cells. The mutations are predominantly base substitutions and deletions and also include insertions from the mammalian genome. Time course experiments argue that mutagenesis occurs soon after arrival of the DNA into the nucleus. However, replication of the vector is not required since mutations occur even when the vector lacks all viral sequences. The high mutation frequency appears to be the characteristic outcome of transfection of DNA into mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document