scholarly journals Molecular identification of the stem rust resistance genes in the introgression lines of spring bread wheat

2019 ◽  
Vol 23 (3) ◽  
pp. 296-303 ◽  
Author(s):  
O. A. Baranova ◽  
S. N. Sibikeev ◽  
A. E. Druzhin

A total of 57 introgression lines and 11 cultivars of spring bread wheat developed by All-Russian Institute of Plant Protection and cultivated in the Volga Region were analyzed. The lines were obtained with the participation of CIMMYT synthetics, durum wheat cultivars, direct crossing with Agropyron elongatum (CI-7-57) and have introgressions from related species of bread wheat, namely translocations from Ag. elongatum (7DS-7DL-7Ae#1L), Aegilops speltoides (2D-2S), Ae. ventricosum (2AL-2AS-2MV#1), Secale cereale (1BL-1R#1S), 6Agi (6D) substitution from Ag. intermedium and triticale Satu. Cultivars and lines were assessed for resistance to Saratov, Lysogorsk, Derbent and Omsk stem rust pathogen populations (Puccinia graminis f. sp. tritici), and analyzed for the presence of the known Sr resistance genes using molecular markers. The analysis of the cultivars’ and lines’ resistance to the Saratov pathogen population in the field, as well as to Omsk, Derbent and Lysogorsk populations at the seedling stage, showed the loss of efficiency of the Sr25 and Sr6Agi genes. The Sr31 gene remained effective. Thirty one wheat lines out of 57 (54.4 % of samples) were resistant to all pathogen populations taken into analysis. The Sr31/Lr26, Sr25/Lr19, Sr28, Sr57/Lr34 and Sr38/Lr37 genes were identified in the introgression lines. The Sr31/Lr26 gene was identified in 19 lines (33.3 % of samples). All lines carrying the 1RS.1BL translocation (Sr31/Lr26) were resistant to all pathogen populations taken into analysis. The Sr25/Lr19 gene was identified in 49 lines (86 %). The gene combination Sr31/Lr26+ Sr25/Lr19 was identified in 15 lines (26.3 %). The gene combinations Sr38/Lr37+Sr25/Lr19, Sr57/Lr34+Sr25/Lr19 and Sr31/Lr26+Sr25/Lr19+Sr28 were identified in 3 introgression lines. These three lines were characterized by resistance to the pathogen populations studied in this work. The Sr2, Sr24, Sr26, Sr32, Sr36 and Sr39 genes were not detected in the analyzed wheat lines.

2020 ◽  
Vol 24 (2) ◽  
pp. 131-138 ◽  
Author(s):  
V. P. Shamanin ◽  
I. V. Pototskaya ◽  
S. S. Shepelev ◽  
V. E. Pozherukova ◽  
E. A. Salina ◽  
...  

Stem rust in recent years has acquired an epiphytotic character, causing significant economic damage  for wheat production in some parts of Western Siberia. On the basis of a race composition study of the stem rust  populations collected in 2016–2017 in Omsk region and Altai Krai, 13 pathotypes in Omsk population and 10 in  Altai population were identified. The race differentiation of stem rust using a tester set of 20 North American  Sr genes differentiator lines was carried out. The genes of stem rust pathotypes of the Omsk population are avirulent only to the resistance gene Sr31, Altai isolates are avirulent not only to Sr31, but also to Sr24, and Sr30. A low  frequency of virulence (10–25 %) of the Omsk population pathotypes was found for Sr11, Sr24,Sr30, and for Altai  population – Sr7b,Sr9b,Sr11,SrTmp, which are ineffective in Omsk region. Field evaluations of resistance to stem  rust were made in 2016–2018 in Omsk region in the varieties and spring wheat lines from three different sources.  The first set included 58 lines and spring bread wheat varieties with identified Sr genes – the so-called trap nursery  (ISRTN – International Stem Rust Trap Nursery). The second set included spring wheat lines from the Arsenal collection, that were previously selected according to a complex of economically valuable traits, with genes for resistance  to stem rust, including genes introgressed into the common wheat genome from wild cereal species. The third  set included spring bread wheat varieties created in the Omsk State Agrarian University within the framework of  a shuttle breeding program, with a synthetic wheat with the Ae. tauschiigenome in their pedigrees. It was established that the resistance genes Sr31, Sr40,Sr2 complexare effective against stem rust in the conditions of Western  Siberia. The following sources with effective Srgenes were selected: (Benno)/6*LMPG-6 DK42, Seri 82, Cham 10,  Bacanora (Sr31), RL 6087 Dyck (Sr40), Amigo (Sr24,1RS-Am), Siouxland (Sr24,Sr31), Roughrider (Sr6, Sr36), Sisson  (Sr6,Sr31,Sr36), and Fleming (Sr6,Sr24,Sr36,1RS-Am), Pavon 76 (Sr2 complex) from the ISRTN nursery; No. 1 BC 1F2 (96 × 113) × 145 × 113 (Sr2,Sr36,Sr44), No. 14а F 3(96 × 113) × 145 (Sr36,Sr44), No. 19 BC 2F3(96 × 113) × 113 (Sr2, Sr36, Sr44), and No. 20 F 3 (96 × 113) × 145  (Sr2,Sr36,Sr40, Sr44) from the Arsenal collection; and the Omsk State Agrarian  University varieties Element 22 (Sr31,Sr35), Lutescens 27-12, Lutescens 87-12 (Sr23,Sr36), Lutescens 70-13, and  Lutescens 87-13 (Sr23,Sr31,Sr36). These sources are recommended for inclusion in the breeding process for developing stem rust resistant varieties in the region.  


Author(s):  
O. A. Orlovskaya ◽  
S. I. Vakula ◽  
L. V. Khotyleva ◽  
A. V. Kilchevsky

Related wild and cultural wheat species are regularly involved for expanding T. aestivum genetic diversity because they contain many valuable genes. We evaluated the effect of the genetic material of tetraploid species of the genus Triticum (T. dicoccoides, T. dicoccum) on the grain quality of introgression lines of spring bread wheat. The composition of the high molecular weight glutenin subunits which play an essential role in the formation of wheat baking properties was identified in the introgression lines of bread wheat and their parental forms. The traits of grain quality (hardness, protein and gluten content, gluten quality) were also evaluated. The lines with Glu-1 loci alleles from wheat relatives T. dicoccoides and Т. dicoccum were selected. It was found that the introgression of alien genetic material into the common wheat genome had a positive effect on the parameters of grain quality such as hardness, protein and gluten content. The lines with Glu-A1 loci alleles from T. dicoccoides and Glu-B1 from T. dicoccum were at the level of a parent wheat variety or of a higher gluten quality. As a result of the research, the new lines of bread soft wheat with high grain quality were found and can be used in the crop breeding.


Plant Disease ◽  
2021 ◽  
Author(s):  
Tyler Gordon ◽  
Yue Jin ◽  
Samuel Gale ◽  
Matthew Rouse ◽  
Samuel Stoxen ◽  
...  

Wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt) is a widespread and recurring threat to wheat production. Emerging Pgt variants are rapidly overcoming major gene resistance deployed in wheat cultivars and new sources of race-nonspecific resistance are urgently needed. The National Small Grains Collection (NSGC) contains thousands of wheat landrace accessions that may harbor unique and broadly effective sources of resistance to emerging Pgt variants. All NSGC available facultative and winter-habit bread wheat landraces were tested in a field nursery in St. Paul, MN against a bulk collection of six common U.S. Pgt races. Infection response and severity data were collected on 9,192 landrace accessions at the soft-dough stage and resistant accessions were derived from single spikes. Derived accessions were tested in St. Paul a second time to confirm resistance and in a field nursery in Njoro, Kenya against emerging races of Pgt with virulence to many known resistance genes including Sr24, Sr31, Sr38, and SrTmp. Accessions resistant in the St. Paul field were also tested at the seedling stage with up to 13 Pgt races, including TTKSK and TKTTF, and with 19 molecular markers linked with known stem rust resistance genes or genes associated with modern breeding practices. Forty-five accessions were resistant in both U.S. and Kenya field nurseries and lacked alleles linked with known stem rust resistance genes. Accessions with either moderate or strong resistance in the U.S. and Kenya field nurseries and with novel seedling resistance will be prioritized for further study.


Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 530-537 ◽  
Author(s):  
E. R. Kerber ◽  
P. L. Dyck

A partially dominant gene for adult-plant leaf rust resistance together with a linked, partially dominant gene for stem rust resistance were transferred to the hexaploid wheat cultivar 'Marquis' from an amphiploid of Aegilops speltoides × Triticum monococcum by direct crossing and backcrossing. Pathological evidence indicated that the alien resistance genes were derived from Ae. speltoides. Differential transmission of the resistance genes through the male gametes occurred in hexaploid hybrids involving the resistant 'Marquis' stock and resulted in distorted segregation ratios. In heterozygotes, pairing between the chromosome arm with the alien segment and the corresponding arm of the normal wheat chromosome was greatly reduced. The apparent close linkage between the two resistance genes, 3 ± 1.07 crossover units, was misleading because of this decrease in pairing in the presence of the 5B diploidizing mechanism. The newly identified gene for adult-plant leaf rust resistance, located on chromosome 2B, is different from adult-plant resistance genes Lr12, Lr13, and Lr22 and from that in the hexaploid accession PI250413; it has been designated Lr35. It is not known whether the newly transferred gene for stem rust resistance differs from Sr32, also derived from Ae. speltoides and located on chromosomes 2B.Key words: hexaploid, Triticum, Aegilops, aneuploid, Puccinia graminis, Puccinia recondita.


Sign in / Sign up

Export Citation Format

Share Document