scholarly journals Evaluation of Genetic Diversity by DNA Barcoding of Local Lotus Populations from Thua Thien Hue Province

Author(s):  
Dang Thanh Long ◽  
Hoang Thi Kim Hong ◽  
Le Ly Thuy Tram ◽  
Nguyen Thi Quynh Trang

Background: DNA barcoding is a relatively new method of identifying plant species using short sequences of chloroplast DNA. Although there is a large number of studies using barcoding on various plant species, there are no such studies in the genus Nelumbo. Methods: Three chloroplast DNA regions (rbcL, matK, trnH-psbA) were tested for their suitability as DNA barcoding regions of thirty three lotus samples which were collected in Thua Thien Hue province, Vietnam. Universal primers were used and sequenced products were analyzed using Minimum Evolution method in the MEGA 7.0 program.Result: We did not observe high variability in nucleotide sequences within the rbcL region (0.135%). White Nelumbo, while, the most encoding matK (8.013%) and variable trnH-psbA (with different number of repeating regions TAAAA) intergenic regions was the most useful for Nelumbo barcoding. Individual application of the studied regions did not provide the expected results. None of the regions used in the study allowed the division of white and pink lotus varieties of N. nucifera specie according to the adopted classification of the genus Nelumbo. The results confirm that the use of matK, rbcL and trnH-psbA or combine all three regions together is insufficient for DNA barcoding in white and pink lotus varieties of N. nucifera specie and better discrimination within the genus Nelumbo. Our results also indicate the necessity of using a different region. All of the new sequences have been deposited in GeneBank under the following accession numbers: rbcL (MN011708 to MN068956); matK (MN011719 to MN068978) and trnH-psbA (MN011730 to MN086252). 

2018 ◽  
Vol 47 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Lidia SKUZA ◽  
Izabela SZUĆKO ◽  
Ewa FILIP ◽  
Anastazja ADAMCZYK

DNA barcoding is a relatively new method of identifying plant species using short sequences of chloroplast DNA. Although there is a large number of studies using barcoding on various plant species, there are no such studies in the genus Secale. In this study the plant material consisted of 10 cultivated and non-cultivated species and subspecies of rye genus. Three chloroplast DNA regions (rbcL, matK, trnH-psbA) were tested for their suitability as DNA barcoding regions. Universal primers were used, and sequenced products were analyzed using Neighbor Joining and the Maximum Likelihood in the MEGA 7.1 program. We did not observe high variability in nucleotide sequences within the matK and rbcL regions. Only 2.2% of the sequences showed polymorphism in the rbcL region, while 6.5% in the matK region. The most variable trnH-psbA (15.6%) intergenic region was the most useful for rye barcoding. Individual application of the studied regions did not provide the expected results. None of the regions used in the study allowed the division of rye species and subspecies according to the adopted classification of the genus Secale. The results confirm that the use of matK and rbcL is insufficient for DNA barcoding in rye species, and better discrimination within the genus Secale can be obtained only in combination with the non-coding trnH-psbA sequence. Our results also indicate the necessity of using a different region. All of the new sequences have been deposited in Genbank.


Phytotaxa ◽  
2014 ◽  
Vol 159 (4) ◽  
pp. 241 ◽  
Author(s):  
Yu-lan Peng ◽  
Yu Zhang ◽  
Xin-fen Gao ◽  
Lin-jing Tong ◽  
Liang Li ◽  
...  

The systematic position of Paraixeris humifusa (Asteraceae) is hard to define, because the circumscription of Paraixeris, Youngia and Crepidiastrum, three closely related genera in subtribe Crepidinae (Cichorieae), is not clear. This paper reports on the relationships between 30 species in subtribe Crepidinae, based on an analysis of nucleotides from one nuclear (ITS) and three chloroplast DNA regions ( trnL-F, rps16 and atpB-rbcL). The phylogenetic analyses used maximum parsimony with maximum likelihood inference. The monophyly of Crepidiastrum in the most recent generic classification of Shih & Kilian (2011) is explored. The results show that 12 species in Crepidiastrum constitute a monophyletic group, and that Paraixeris humifusa should be treated as Youngia humifusa.


10.5772/48815 ◽  
2012 ◽  
Author(s):  
Walma Nogueira Ramos Guimares ◽  
Gabriela de Morais Guerra Ferraz ◽  
Luiza Suely Semen Martins ◽  
Luciane Vilela ◽  
Helio Almeida ◽  
...  

2016 ◽  
Vol 58 (3) ◽  
pp. 212-219 ◽  
Author(s):  
Hitomi S. Kikkawa ◽  
Kouichiro Tsuge ◽  
Ritsuko Sugita

2012 ◽  
pp. n/a-n/a
Author(s):  
Changkyun Kim ◽  
Hong-Guang Zha ◽  
Tao Deng ◽  
Hang Sun ◽  
Su-Gong Wu

2018 ◽  
Vol 51 ◽  
pp. 185-192
Author(s):  
S. Kruhlyk ◽  
V. Dzitsiuk ◽  
V. Spyrydonov

Genetic variability of domestic dogs is a source for effective process of breed formation and creating unique gene complexes. In the world, for preservation of genetic resources of dogs, there are dog training associations which have great confidence: American Club Dog Breeders (AKC), the British Kennel Club (KC) and the Federation Cynologique Internationale (FCI), aimed at protecting breeding dogs, standards creation, registration of a breed, and issuance of accurate pedigrees. Evaluation of the genetic diversity of dog breeds is able to significantly complement and improve their breeding programs. Since breeds of dog differ in morphological and economic characteristics, the problem of finding of the breed features in the genome of animals is becoming more topical. From this point of view, French Bulldog is an interesting breed of dog (FRANC.BULLDOGGE, FCI standard number 101) which belongs by the classification of breeds, adopted in FCI, to the group IX – a dog-companion for health and fun, but to a subgroup of fighting dogs of a small format. French Bulldog breed has been researched slightly not only in Ukraine and also abroad, as the main work of all dog association is focused on solving theoretical and practical issues of breeding, keeping, feeding, veterinary protection and others. The study was conducted at Research Department of Molecular Diagnostic Tests of Ukrainian Laboratory of Quality and Safety of Agricultural Products. 33 animals of French Bulldog breed, admitted to use in dog breeding of Ukrainian Kennel Union (UKU), were involved for the genetic analysis using DNA markers. The materials of the research were buccal epithelial cells, selected before the morning feeding of animals by scraping mucous membrane of oral cavity with disposable, dry, sterile cotton swab. Genomic DNA was extracted using KIT-set of reagents for DNA isolation according to the manufacturer's instructions. PEZ1, PEZ3, PEZ6, PEZ8, FHC 2010, FHC 2054 markers, recommended by International Society for Animal Genetics (ISAG), ACN, КC and FCI, were used for research. As a result of research 25 alleles for all the loci were detected in the experimental sample of dogs. The average number of alleles at the locus Na, obtained by direct counting, was 4.16. The most polymorphic loci for this breed were PEZ6 and PEZ3 with 8 and 6 allelic variants. Monomorphic loci were PEZ8 and FHC 2054 which had 4 and 3 alleles and the lowest level of polymorphism was observed for PEZ 1 and FHC 2010 loci in which only 2 alleles were identified. On analyzing the molecular genetic characteristics of dogs of French Bulldog breed, we found a high variability of genotype on rare alleles, which included alleles: M, C, D, E, J, K, L, O, N and representing 60% of the total number of the identified alleles. C, D, E alleles for PEZ3 locus and O allele at PEZ6 locus are unique to the sampling of dogs because they are not repeated in other loci. Typical alleles: N, F, R, I, P, K, M are 40% of the total. But F, R alleles for PEZ3 locus and P allele for locus PEZ6 are not repeated either in standard allelic variants or in rare one, indicating a high information content of these alleles and loci to be used for further monitoring of allele pool, genetic certification and identification of dogs. Microsatellite DNA loci were analyzed as a result of investigations of French Bulldogs and the most informative: PEZ3, PEZ6 and PEZ8 were found, which have high efficiency in individual and breed certification of dogs due to high variability. These data allow further monitoring of the state of genetic diversity of the breed and the development of measures for improvement of breeding to preserve the structure of breeding material. The study of individual and population genetic variability is advisable to continue for breeding of French Bulldogs "in purity" and preserving valuable gene complexes. The results are the basis for further monitoring of the proposed informative panels of microsatellite DNA markers for genotyping dog of French Bulldog breed and their complex evaluation.


Genetics ◽  
1994 ◽  
Vol 137 (3) ◽  
pp. 883-889 ◽  
Author(s):  
N T Miyashita ◽  
N Mori ◽  
K Tsunewaki

Abstract Restriction map variation in two 5-6-kb chloroplast DNA regions of five diploid Aegilops species in the section Sitopsis and two wild tetraploid wheats, Triticum dicoccoides and Triticum araraticum, was investigated with a battery of four-cutter restriction enzymes. A single accession each of Triticum durum, Triticum timopheevi and Triticum aestivum was included as a reference. More than 250 restriction sites were scored, of which only seven sites were found polymorphic in Aegilops speltoides. No restriction site polymorphisms were detected in all of the other diploid and tetraploid species. In addition, six insertion/deletion polymorphisms were detected, but they were mostly unique or species-specific. Estimated nucleotide diversity was 0.0006 for A. speltoides, and 0.0000 for all the other investigated species. In A. speltoides, none of Tajima's D values was significant, indicating no clear deviation from the neutrality of molecular polymorphisms. Significant non-random association was detected for three combinations out of 10 possible pairs between polymorphic restriction sites in A. speltoides. Phylogenetic relationship among all the plastotypes (plastid genotype) suggested the diphyletic origin of T. dicoccoides and T. araraticum. A plastotype of one A. speltoides accession was identical to the major type of T. araraticum (T. timopheevi inclusively). Three of the plastotypes found in the Sitopsis species are very similar, but not identical, to that of T. dicoccoides, T. durum and T. aestivum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wen-Wen Li ◽  
Li-Qiang Liu ◽  
Qiu-Ping Zhang ◽  
Wei-Quan Zhou ◽  
Guo-Quan Fan ◽  
...  

AbstractTo clarify the phytogeography of Prunus armeniaca L., two chloroplast DNA fragments (trnL-trnF and ycf1) and the nuclear ribosomal DNA internal transcribed spacer (ITS) were employed to assess genetic variation across 12 P. armeniaca populations. The results of cpDNA and ITS sequence data analysis showed a high the level of genetic diversity (cpDNA: HT = 0.499; ITS: HT = 0.876) and a low level of genetic differentiation (cpDNA: FST = 0.1628; ITS: FST = 0.0297) in P. armeniaca. Analysis of molecular variance (AMOVA) revealed that most of the genetic variation in P. armeniaca occurred among individuals within populations. The value of interpopulation differentiation (NST) was significantly higher than the number of substitution types (GST), indicating genealogical structure in P. armeniaca. P. armeniaca shared genotypes with related species and may be associated with them through continuous and extensive gene flow. The haplotypes/genotypes of cultivated apricot populations in Xinjiang, North China, and foreign apricot populations were mixed with large numbers of haplotypes/genotypes of wild apricot populations from the Ili River Valley. The wild apricot populations in the Ili River Valley contained the ancestral haplotypes/genotypes with the highest genetic diversity and were located in an area considered a potential glacial refugium for P. armeniaca. Since population expansion occurred 16.53 kyr ago, the area has provided a suitable climate for the population and protected the genetic diversity of P. armeniaca.


Sign in / Sign up

Export Citation Format

Share Document